
1 INTRODUCTION 
 
Concrete materials present elastoplastic damage 
behaviour. Extensive experimental investigations 
have been realized on concrete to understand the 
behaviour of such type of materials. The elastic and 
plastic properties are affected by induced damage, 
which leads to a softening behaviour. The behaviour 
of concrete depends on the cofining pressure. Under 
low confining pressure, failure due to coalescence of 
microcracks is the main mechanism. Whereas, under 
high confining pressure, the plastic deformation 
becomes the main mechanism, and hence, there is a 
clear transition from ductile to brittle behaviour. 
Mechanical behavior is also clearly different 
between tensile and compressive stresses. Coupled 
plastic deformation and induced damage model 
should be used for the description of concrete under 
various loading conditions. The mechanism of 
failure is not related only to that of plastic 
deformation. The failure of concrete is generally 
related to the strain localization phenomenon which 
leads to a softening behavior. It is then important to 
describe the post localization behaviour of the 
material for a sound description of failure process. In 
quasi-brittle materials like concrete, the material 
softening is generally viewed as a consequence of 
the damage due to nucleation and growth of 
microcracks. This feature should be taken into 
account in the constitutive model. 

     From a numerical point of view, some severe 
difficulties arise and can be noticed in softening 
modeling. The analysis shows a great dependence of 
the results on the mesh distribution. The strain or 
damage localizes into a band within the mesh. The 
width of this band decreases and tends to zero when 
the mesh is refined. The boundary value problem 
becomes ill-posed due to the loss of ellipticity (Hill 
& Hitchinson 1975). The non-local approach was 
developed in order to regularize the problem of 
strain localization and mesh senstivity (Pijaudier-
Cabot & Bazant 1987). In this approach, the 
constitutive law for damage description at a point of 
a continuum involves weighted averages of a state 
variable over a certain neighbourhood of that point. 
The non-local approach must be applied to the 
variables that cause strain softening and not to the 
elastic behaviour. A characteristic lengh is 
introduced in order to fix the width of the failure 
process zone in which strain localizes (Bazant & 
Pijaudier-Cabot 1989). This will prevent strain 
localization into a band of zero-width.  
     The present paper presents the formulation of an 
elastoplastic with non local damage model. A non 
associated flow rule is used together with plastic 
strain hardening law. The material softening is 
supposed to be related to the damage induced by 
microcracks. The model takes into consideration the 
coupling between the elastic - plastic deformation 
and damage. The model is then extended to a non-
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local one. Comparisons between experimental data 
and the response of the model are presented. A 
numerical application for a boundary value problem 
is provided in order to show the performance of the 
model. However, only mechanical loading is 
considered in the present paper. Extension to 
coupled hydromechanical and chemo-mechanical 
loading will be presented in future papers. 

2 FORMULATION OF THE MODEL 
 
In this section, we present the formulation of a local 
elastoplastic damage model. The constitutive 
behaviour law is formulated by adopting the 
assumption of small strains. The total strain tensor, 
dε , is decomposed into an elastic part, edε , and a 
plastic part, pdε :   

e pd d dε ε ε= +  (1)        

2.1 Elastic behaviour 

The effective elastic behaviour is characterized by 
the bulk modulus, ( )k d , and the shear modulus, 
( )dμ . Those two moduli are degraded by the 

induced damage. Based on micromechanical 
analysis (Mura 1987), they are supposed to depend 
on the damage variable, d  as follows:  

( ) ( )[ ]0 11
v
ek d k H dα ε= − , ( ) [ ]0 21d dμ μ α= −  (2) 

0k  and 0μ  are the initial bulk and shear moduli 
respectively, 1α  and 2α  are two parameters that 
define the progressive deterioration of elastic 
properties due to damage. e

vε  is the elastic 
volumetric strain and ( )evH ε  is the Heaviside’s 
function introduced to describe unilateral effect of 
crack closure on bulk modulus. 
     The thermodynamic potential is the sum of the 
energy for elastic strain and the locked energy for 
plastic hardening: 

( ) ( )( ) ( ) ( )21, , 2 :
2

e ee e p
p v pd k d d e eε γ ε μ γ⎡ ⎤Ψ = + + Ψ⎣ ⎦  (3) 

e
vε  is the elastic volumetric strain, ee  is the elastic 

deviatoric strain tensor, pγ  is the generalized plastic 

shear strain and ( )p
pγΨ  is the locked energy for 

plastic hardening. We assume, in the present model, 
that the evolution of damage is not coupled with the 
plastic hardening process. So, the locked energy for 
plastic hardening is independent of the damage 
variable. The constitutive equations are obtained by 
the standard derivation of the thermodynamic 
potential with respect to elastic strain: 

( ) ( ) ( )2 ee
e k d tr d eσ ε δ μ
ε

∂Ψ= = +
∂

 (4) 

2.2 Plastic characterization 

The plastic behaviour of concrete depends generally 
on three invariants of stresses: the average stress, the 
deviatoric stress and Lode’s angle, defined by: 

( )I tr σ= − , 23Jσ = , 31
3/2
2

1 3 3Sin
3 2

J
J

θ − ⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜⎝ ⎠
   

3
kks σσ δ= − , 2

3
2 ij ij

J s s= , 3 det( )J s=  (5) 

 

s  denotes the tensor of deviatoric stress. 
Based on experimental data, the mechanical 

behaviour of concrete depends strongly on the 
confining pressure. So, it appears appropriate to use 
a non linear yield surface for the description of such 
kind of materials. The quadratic failure surface 
proposed by Pietruszczak et al. (Pietruszczak et al. 
1998) is adapted in the present model: 

2

10 20 30 0
( ) ( )c c c

IF c c c
g f g f f
σ σ
θ θ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜= + − + =⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎟⎜⎟ ⎟⎜ ⎜ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (6) 

10c , 20c , and 30c  are model parameters of sound 
material that define the geometrical form of the 
failure surface in stress space. The three parameters 
define material cohesion and friction coefficient. cf  
represents the uniaxial compressive strength of the 
material. θ is Lode’s angle defined within the 

interval ,
6 6
π πθ ⎡ ⎤∈ −⎢ ⎥⎣ ⎦

. ( )g θ  permits to take into 

account the influence of the third invariant of stress 
on the failure surface. This function satisfies the 
aspect ratio condition ( ) 1

6
g π =  and  ( )

6
g Kπ− = . 

K  is a material parameter defined by the ratio of the 
slope of the tensile meridian to the compressive one.  
     We used the function proposed by William and 
Warnkee (William & Warnkee 1975) for the 
definition of Lode’s function: 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2

22 2
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6

K K K K K
g

K K

π πθ θ
θ πθ

− + + − − + + −
=

− + + −

 (7) 

The failure surface is convex for all values of K  
between 0.5 and 1 (Fig. 1). 
     Damage by microcracks affects the material 
behaviour, especially the plastic and failure 
properties. In order to account for damage effect on 
plastic deformation, it assumed that the compressive 



strength of material, cf , decreases with the increase 
of damage. This is in agreement with experimental 
data observed on various concrete. However, for the 
sake of simplicity, the following linear relation is 
used: 

( )0 1c cf f d= −  (8) 

0cf  denotes the uniaxial compressive strength of 
undamaged material and d  is the damage variable. 
Replacing cf  in (6) using (8), we can obtain the 
expression of failure surface for damaged material: 

2

1 2 3
0 0 0

0
( ) ( )c c c

IF c c c
g f g f f

σ σ
θ θ
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with: 

1 10c c= ,
( )
20

2 1
cc
d

=
−

, ( )3 30 1c c d= −  (10) 

We notice that the material cohesion and friction are 
affected by the induced damage. 
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Figure 1. Representation of the plastic loading surface in the 
principal deviatoric stress space for different values of K. 
 
By supposing that the failure surface represents the 
asymptotic position of the plastic loading surface, 
and by introducing a plastic hardening law, the 
plastic yield function can be written in the following 
parametric form: 

( ) ( ) 0cp p pf gσ α γ θ σ= − =  (11) 

with: 

( )( )2
1 1 2 3

2

4 /
2

co
c co

c c c c I f
f

c
σ

− + + +
=  (12) 

( )p pα γ  represents the plastic hardening law. Its 
expression is deduced from the locked plastic 

potential ( )p
pγΨ . The latter is a function of the 

plastic hardening variable pγ . Based on experimental 
data from compression tests on concrete materials, 
the locked plastic energy function is expressed as 
follows: 

( ) 0
0

0
ln pp

p p
A

A
A

γ
γ γ

+⎛ ⎞⎟⎜Ψ = − ⎟⎜ ⎟⎜⎝ ⎠
 (13) 

The parameter 0A  controls the kinetics of plastic 
hardening. The standard derivation of the locked 
plastic potential with respect to pγ  gives us the 
expression of the plastic hardening law.: 

( )
0

p
p p

pA
γ

α γ γ=
+

 (14) 

Therefore, the hardening law ( )p pα γ  is an 
increasing hyperbolic function of the plastic 
distortion pγ .  

     The generalized plastic shear strain pγ  is defined 
by: 

2 :
3

p p

p
p

de de
dγ χ= , 1 ( )

3
p p pde = d - tr dε ε δ  (15) 

pde  is the deviatoric plastic strain tensor. The 
function pχ  is introduced for the case where the 
plastic hardening rate depends strongly on the 
confining pressure. It is defined as: 

1b
co

p
co

I f
f
+⎛ ⎞

χ = ⎜ ⎟
⎝ ⎠

 (16) 

< > represents Macauley brackets and 1b  is a 
model’s parameter.  
     According to experimental data for concrete, 
there is a necessity to use a non associated plastic 
flow rule in order to describe correctly the plastic 
compressibility and dilatancy. Inspired by the plastic 
model proposed by Pietruszczak et al. (Pietruszczak 
et al. 1988) for concrete, the following plastic 
potential is used: 

( )
0

ln 0c
IQ g I
I

σ μ θ
⎛ ⎞⎟⎜= + =⎟⎜ ⎟⎟⎜⎝ ⎠

, 3 coI c f I= +  (17) 

0I  is a coefficient that corresponds to the 
intersection point between the plastic potential 
surface and the axis 0I > . cμ  represents the ratio 

( )g I
σ
θ

 at the point for which 0p
kkdε = ; i.e. the 



transition point from plastic compressibility to 
dilatancy. 

2.3 Damage characterization 

The induced damage is supposed to be isotropic for 
the sake of simplicity. However, the induced damage 
is generally anisotropic for concrete materials 
subjected to compressive loading due to the 
distribution and the orientation of microcracks. 
     The evolution of damage is determined through a 
damage criterion. A driving force is supposed to be 
responsible of the damage evolution. Referring to 
the previous work performed by Mazars on the 
damage of concrete (Mazars 1984), an exponential 
form was chosen for describing the damage 
criterion: 

( ) ( )0, exp 0d d c c d df d d d B dξ = − ⎡− ξ − ξ ⎤ − ≤⎣ ⎦  (18) 

cd  represents the critical damage. It corresponds to 
the residual strength of the damaged material. 0ξ  is 
the initial threshold of damage. dB  is a parameter 
that controls the kinetics of the evolution of damage. 

     The damage evolution of concrete materials, 
under compression, is affected by both elastic and 
plastic strains. Therefore, the driving force of 
damage, dξ , is supposed to depend on total strain. It 
depends on the volumetric dilatance strain and the 
shear strain: 

2
1 0 2 0

1 2 : /
2d v dk e eξ α ε α μ χ⎡ ⎤= +⎣ ⎦  (19) 

dχ  describes the effect of the confining pressure on 
the damage evolution and the transition from brittle 
to ductile behaviour. We have proposed the 
following expression for the normalizing function: 

2b
co

d
co

I f
f
+⎛ ⎞

χ = ⎜ ⎟
⎝ ⎠

 (20) 

2b  is a model’s parameter. With this normalizing 
function, the rate of damage becomes smaller when 
confining pressure is higher. Then there is a 
transition from brittle behaviour under low confining 
pressure to ductile behavior under high confining 
pressure. 

3 NUMERICAL SIMULATIONS 

The proposed model contains 14 parameters. Those 
parameters can be fully identified from a series of 
triaxial compression tests with different confining 
pressures. In Table 1, we present the values of the 

parameters for the concrete data reported by 
Kotsovos and Newman (Kotsovos & Newman 
1980).   
 
Table 1.  Model parameters for concrete material reported by 
Kotsovos and Newman (Kotsovos & Newman 1980) 
___________________________________________________ 
Parameter                 Value   
                            __________________________________ 
  MPa  No unit         Pa-1             
___________________________________________________ 
E0  300000    
ν0    0.15   
fc0  46.9    
c10    1.5   
c20    0.102   
c30     0.714   
b1    1.0 
A0    0.0003 
µc     0.466                
K    0.68 
dc    0.8 
ξ0  0.0605 
Bd      6.10-8 

b2    1.0 
__________________________________________________ 
 
Figure 2 presents the comparison between the failure 
surfaces for triaxial compression and extension tests 
with the experimental data reported by (Smith 1985, 
Mills & Zimmerman 1970, Imran 1994, Scholz et al. 
1995, Linse & Aschl 1976, Sfer et al. 2002). The 
following comparison shows the capacity of the 
model to describe the behaviour at the ultimate 
stress state for concrete materials.    
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Figure 2. Compressive and tensile failure surfaces in ( ),I σ  
plane. Data from (Smith 1985, Mills & Zimmerman 1970, 
Scholz et al. 1995, Linse & Aschl 1976, Sfer et al. 2002). 
      
Another comparison is done in the deviatoric plane. 
This comparison was performed in order to show the 
capability of the proposed failure criterion to 
describe correctly the failure of concrete in different 
loading orientations along Lode’s angle. There is a 
good agreement between the numerical response and 
the experimental data (Fig. 3).  
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Figure 3. Comparison of the yield surface with the 
experimental data in the deviatoric plane. 
 
Simulations of triaxial compression tests with 
different confining pressures are performed. The 
simulations are compared with the laboratory tests. 
Figure 4 shows an example of simulation of triaxial 
compression tests and its comparison with 
experimental data reported by Kotsovos and 
Newman (Kotsovos & Newman 1980). This 
comparison shows that the proposed model is able to 
predict the main features observed in the laboratory 
tests. 
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Figure 4. Triaxial compression tests with different confining 
pressures. Data reported by Kotsovos and Newman (Kotsovos 
& Newman 1980). 
 
In addition to the previous simulations, some 
simulations are also realized for triaxial compression 
tests with low cofining pressures. The experimental 
data is reported by Sfer et al. (Sfer et al. 2002). The 
comparison between the response of the model and 
the laboratory tests is presented in Figure 5. We 
notice that the proposed model is able to give good 
results for the basic features of concrete and for all 
stages of loading. It can describe the hardening 
phase correctly, the behaviour at ultimate stress state 
as well as the softening phase.  
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Figure 5. Triaxial compression tests with different confining 
pressures. Data reported by Sfer et al. (Sfer et al. 2002). 

4 NON-LOCAL DAMAGE MODEL 

In the local theory, the physical state of a point 
material depends only on the state of the material 
itself. The local formulation, using the finite element 
method, leads to mesh dependencies and severe 
difficulties in the softening regime. The strain and 
damage tends to localize into a band with finite 
width. The width of this band decreases for fine 
meshes and it tends to zero if the mesh is refined 
more and more. The governing equilibrium 
equations lose their ellipticity. This will lead to ill-
posed boundary value problems. This mesh 
sensitivity is an open topic that leads many 
researchers to propose regularization approaches. 
One of the regularization approaches is the non-local 
approach. The non-local theory states that the local 
state of a point material is not sufficient to evaluate 
the stress at that point. This theory considers that the 
response of a point material depends on the 
deformation at that point as well as the deformation 
of the neighbourhood points. A material loses its 
resistance with damage. The increase of the damage 
can create a softening behaviour. In order to avoid 
the mesh dependency, the non-local approach is 
applied only for the variables that control the strain 
softening. So, the concept of non- locality is applied 
here only to the damage variable. The non-locality 
of damage is introduced through the definition of a 
weight average of the driving force dξ . The driving 
force is replaced with its average over a 
representative elementary volume rV . The 
expression of the non-local driving force is the 
following: 



( )

( ) r

d
V

d
r

y dV

x
V

ξ

ξ =
∫

 (21) 

A Gauss type weight function ( ),y xψ  is introduced 
in order to generalize the above integral over the 
whole domain Ω : 

( )1( ) , ( )
( )d dx y x y d
x

ξ ψ ξ
Ω

= Ω
Ψ ∫  (22) 

( )xΨ  is a normalizing factor whose expression is 
given by: 

( )( ) ,x y x dψ
Ω

Ψ = Ω∫  (23) 

     The weight function is supposed to be 
homogeneous and isotropic. It depends on the 
distance between the source point x  and the 
receiver point y . Many weight functions are 
presented in the literature. The Gaussian weight 
function is the most popular and used one: 

( ) ( ) dim 2

2
1, exp
2 2

N x yy x
l l

ψ π
⎛ ⎞− ⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

 (24) 

dimN  is the number of spatial dimensions. l  is the 
characteristic length. The characteristic length 
depends on the heterogeneity of the material.   

4.1 Implementation of the non-local variable 

The non-local driving force of damage defined by 
the equation (22) can be calculated using Gauss 
method in the finite element method. The non-local 
value dξ  over a geometric point vector ix  is 
calculated as follows: 

( )

( )
1 1

1 1

, ( )det( )
( )

, det( )

ge

g

ge

g

NN

g i d g g
N g

d i NN

g i g
N g

w y x y J
x

w y x J

= =

= =

=
∑∑

∑∑

ψ ξ
ξ

ψ
 (25) 

eN  is the total number of elements, gN  is the 
number of Gauss points within an element, gy  is the 
vector of the integration points and gw  is the gauss 
integration weight coefficient. 
     We present in figure 6 an illustration of the 
averaging zone within a mesh, with the source and 
receiver points. The material point ix  is affected by 
the points in a certain neighbourhood depending on 
the characteristic length. The far points have 
negligible influence on the point behaviour. 
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Figure 6. Illustration of averaging zone for non local damage 
model. 

5 NUMERICAL APPLICATION 

The model is implemented in a finite element code. 
In this section, we will show the performance of the 
proposed model in the modelling of the progressive 
failure after the strain localization. We will show the 
deficiency of the local formulation to reproduce 
correctly the strain localization phenomenon. Local 
and non-local analyses are thus performed for a 
structural example.  
     The example concerns the failure of a simply 
supported beam due to a vertical center point 
loading. The beam is of 3 m length and 0.3 m height. 
The vertical loading is controlled by applying a 
vertical displacement at the midpoint of the beam. 
This displacement varies from 0 to 1.5 cm. The 
geometry of the beam is illustrated in Fig. 7. 
 

 
Figure 7. Geometry of the beam. 
 
Three meshes of 300, 600 and 1200 elements are 
used to study the strain localization. We present the 
distribution of the damage in the beam using the 
local and non-local formulations. We notice that the 
results obtained by the local formulation are clearly 
sensitive to the mesh (Fig. 8). Due to the application 
of the vertical displacement, tensile stresses are 
generated in the lower part of the beam. This will 
lead to the formation of microcracks. The 
microcracks will thus form a band of localization 
where the damage is localized. The localized 
damage zone is formed at the centre of the beam. 
The growth and the propagation of damage are 
propagating from the lower part to the upper part of 
the beam. The bandwidth decreases when the mesh 
is refined. The damage tends to localize into more 



and more narrow band with the refinement of the 
mesh.   
 

 
Figure 8. Local damage distribution in the beam: (a)- 300 
elements, (b)- 600 elements and (c)- 1200 elements. 
 

 
Figure 9. Non-local damage distribution in the beam: (a)- 300 
elements, (b)- 600 elements and (c)- 1200 elements. 
 
In Figure 9, we present the distribution of damage in 
the beam using the non-local model. We notice that 
the results are insensitive to the mesh used. The 
width of the damaged zone is controlled by the 
internal characteristic length. So, the non-local 
analysis is capable to regularize the problem of mesh 
sensitivity. 
     The damage profiles are plotted for the three 
meshes at the midheight of the beam along the 
horizontal axis. Once again, in the local study, the 
damage tends to localize into a narrow zone when 
the mesh is refined (Fig. 10).  
     On the other hand, the damage profiles obtained 
by the non-local analysis are almost identical for the 
three meshes (Fig. 11) 
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Figure 10. Local damage profiles at the midheight of the beam 
along x-axis. 
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Figure 11. Non-local damage profiles at the midheight of the 
beam along x-axis. 
 
We present, in figure 12, the vertical force-
displacement curve at the centre of the beam for the 
three meshes using the nonlocal approach. 
The results do not suffer from pathological 
sensitivity to mesh size. The curves are almost 
identical for fine meshes. 
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Figure 12. Vertical load-displacement curve at the centre of the 
beam using the nonlocal approach. 
 

6 CONCLUSION 

An elastoplastic model coupled with damage is 
formulated for the mechanical behaviour of 
concrete. The model is then applied for the 
simulation of some laboratory tests at different 
loading conditions. There is a good agreement 
between the numerical prediction of the model and 
the experimental data. The softening behaviour is 
controlled by the induced damage produced by 
microcracks. The model is then formulated in a non-
local manner. The non-local approach is applied on 
the evolution of damage. The local driving force is 
replaced by its non-local counter part. 
Representative concrete structure was studied to 



show the applicability of the model to engineering 
concerns. Local and non-local analyses are applied 
to a concrete beam subjected to a 3-point flexure. 
The local results are sensitive to the mesh. The 
width of the damaged zone decreases with the 
refinement of the mesh. Whereas, the results 
obtained by the non-local model are insensitive to 
mesh. The width of the damage zone is constant. 
This shows the performance of the non-local 
approach to well regularize the problem of strain 
localization. 
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