
1 INTRODUCTION  

The micropolar peridynamic model has been intro-
duced in (Gerstle et al. 2007). In essence, this model 
assumes an infinite number of infinitesimal frame 
elements (of finite length) connect infinitesimally-
sized material particles together. We call these in-
finitesimal frame elements “micropolar peridynamic 
links”. The infinitesimal material particles move in 
accordance with Newton’s Second Law in response 
to both external forces and internal forces which re-
sult from the deformations and rotations of the ends 
of the peridynamic links. 

Lattice models of materials, for example (Schlan-
gen & Van Mier 1992), are not new. What is new 
with the micropolar peridynamic model is the idea 
that these lattice models can be extended into the in-
finitesimal regime, and that the material properties 
can be expressed independently of the method in 
which these lattice models are discretized (Gerstle, 
et al. 2007). 

Silling (Silling 2002) has developed a peridy-
namic computer program, called EMU, which as-
sumes material particles are rigid bodies of finite, 
rather than infinitesimal, size. This modeling as-
sumption requires a huge number of such material

particles even for modeling relatively simple struc-
tures.  (Gerstle et al. 2007) have shown how the mi-
cropolar peridynamic model can be implemented 
within a finite element framework. This finite ele-
ment implementation of the micropolar peridynamic 
model can drastically reduce the number of degrees 
of freedom required to represent a structural model. 

The great advantage of the peridynamic model is 
that discontinuous displacement fields can emerge as 
the peridynamic links weaken and are broken. In-
deed, the initial continuous displacement field is also 
an emergent, rather than a pre-assumed, phenome-
non. 

We present here a very simple micropolar 
peridynamic model that is capable of accurately 
modeling failure of a uniaxial concrete specimen in 
both tension and in compression as well as in a 
number of other stress states. 

The micropolar peridynamic model produces 
some surprising behavior that is not predicted by the 
classical theory of elasticity. For example, this 
nonlocal model predicts a flexible boundary layer 
and a consequent size effect on elastic behavior for 
small structural sizes. These effects are discussed in 
this paper. 
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Very simple constitutive models at the peridynamic level appear to be sufficient to model the complex 
damage and fracture phenomena observed in concrete structures. 

The peridynamic model predicts significant elastic boundary effects that are not predicted by classical 
stress-strain models. As a consequence, the peridynamic model predicts an effect of specimen size upon elas-
tic stiffness.  



2 MICROPOLAR PERIDYNAMIC MODEL 

The micropolar peridynamic model is able to model 
concrete and other quasibrittle materials with Pois-
son’s ratios having values different than ¼. By al-
lowing moments and rotations in addition to forces 
and displacements, the micropolar peridynamic 
model is a generalization of Silling’s peridynamic 
model (Silling: 1998; 2000; 2002). This model is 
placed in a finite element framework, which allows 
effective application of boundary conditions, where 
the displacement field contained in each element is 
assumed to be continuous and high strain gradients 
or discontinuities can develop between elements 
(Gerstle et al. 2007). 

The peridynamic formulation is based upon New-
ton’s second and third laws, where a group of finite 
or infinitesimally small particles interact with each 
other through internal forces called ‘pair-wise’ force 
functions (with units of force per unit volume 
squared). Only particles closer together than the ma-
terial horizon ‘δ’ are assumed to interact: particles 
more distant than this material horizon do not inter-
act. The elastic peridynamic formulation can be ex-
pressed as (Silling 1998, Gerstle et al. 2005): 
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if δξ < , and 0),( =ξηijf  otherwise. ),( ξηijf is 

the pairwise force function (per unit volume 
squared) between particles ‘i’ and ‘j’ with volumes 
dVi and dVj respectively, η  and ξ  are the relative 
displacement and the relative position between these 
particles, i

b  is the externally applied force per unit 

volume, c is a micro elastic constant, and s is the 
stretch of the peridynamic link. The above formula-
tion can be extended to the micropolar model by 
adding moments and relative rotations (Gerstle et al. 
2006): 
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where θ  is the relative rotation, ijm  is the moment 
function (with units of moment per volume squared), 

and im  is the externally applied moment per unit 
volume. At the microelastic level, the pairwise force 
function ijf  and pairwise moment function ijm  be-
tween particles i and j can be determined using 
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where the microelastic stiffness matrix [kij] is a 
function of the area A, moment of inertia I, torsional 
moment of inertia 2I, microelastic Young’s modulus 
E’ and length L of the micropolar peridynamic link 
of axisymmetric cross-section shown in Fig. 1, and 
{dij} is the displacement vector between particles i 
and j. The axial and bending stiffnesses of such an 
element are characterized by two constants AEc '≡  
and IEd '≡ , where E’ is a micro-elastic Young’s 
modulus. 

Figure 1. Differential frame element. 
 
The differential strain energy stored in the linear 
elastic link between particles ‘i’ and ‘j’ is: 
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and the total elastic energy within the domain R is 
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3 FEM IMPLEMENTATION OF MICROPOLAR 
PERIDYNAMIC MODEL 

Using standard finite element interpolation func-
tions, the displacements at any two points ‘i’ and ‘j’ 
within elements ‘m’ and ‘n’, respectively, are: 
 
{ } [ ]{ }m

m
i DNd =  , { } [ ]{ }n

n
j DNd = ,                      (8) 

 

L, I, A, E’ 
zy III ˆˆ ==  

IIIIJ zyx 2ˆˆˆ =+==  

j

ẑ
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where [Nm] and [Nn] are the shape function matrices 
and [Dm] and [Dn] are the element nodal displace-
ments. 

The displacement vector for both points ‘i’ and ‘j’ 
can be expressed as 
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Similarly, when both points ‘i’ and ‘j’ lie within 
element ‘m’: 
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The stiffness contribution from links between ele-
ments ‘m’ and ‘n’ can be expressed as:                                                                                                                                                         
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and the contribution from links entirely embedded 
within element ‘m’ is given by: 
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The factor ½ is removed from Equation (11) to 
avoid double-counting the matrices [kij] and [kji]. 
Following the assembly of the global structure stiff-
ness matrix, the displacements and forces can be de-
termined in the usual manner.  

The whole point of casting the peridynamic 
model within a finite element framework is to re-
duce the number of simultaneous equations, which 
must be solved. The finite element method, how-
ever, constrains the displacement field to be con-
tinuous within finite elements. This constraint is not 
unreasonable in regimes where peridynamic links 
are elastic. However, where such links soften or are 
completely broken, the solution involves strain lo-
calization. In such cases, it is necessary to make the 
finite elements be significantly smaller than the ma-
terial horizon δ to obtain mesh-independent results. 
Note that using the present formulation; it is not 
necessary to connect elements together at nodes, be-
cause the stiffness of the peridynamic links between 
elements closer together than the material horizon, δ, 
ensures that correct displacements will be computed. 
However, in regimes where it is known that localiza-
tion of strain cannot occur, finite elements can still 
be connected together at nodes as a means of reduc-
ing the number of degrees of freedom. 

Also, note that the method works for 1D, 2D, and 
3D elements of all types (frames, plates, shells, etc.), 
and we also do not preclude zero-dimensional 
(point) finite elements.  

Finally, note that as a solution proceeds, it is pos-
sible to replace higher-dimensional elements with 
0D elements in order to allow strain localizations to 
proceed unhindered by the assumptions of interpola-
tions within the higher-dimensional elements. How-
ever, this will be at the expense of additional degrees 
of freedom. An example of this type of adaptive so-
lution is presented in Section 7. 

The next section explains how, for an elastic do-
main (far from a boundary), the micro elastic pa-
rameters c and d can be determined from the con-
ventional macro elastic Young’s modulus E and 
Poisson’s ratio ν, thus relating micropolar peridy-
namics and conventional continuum mechanics-
based elasticity theory. 

4 RELATIONSHIP BETWEEN MICRO- AND 
MACRO-ELASTIC CONSTANTS 

With reference to Fig. 1, we have defined micro 
elastic constants AEc '≡  and IEd '≡ . An expres-
sion for the peridynamic strain energy density can be 
obtained by integrating the energy stored in all 
peridynamic links expressed by Equation (6) con-
nected to a given differential material point, assum-
ing a uniform principal strain field {ε}. For planar 
peridynamic links, this expression is given by    
(Gerstle et al 2006): 
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Likewise, for plane stress conditions, the internal 
strain energy density using conventional theory of 
elasticity is given by: 
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Because Equations (13) and (14) must be equal for 
all strain states, {ε}, the micro elastic constants ‘c’ 
and ‘d’ can be obtained as functions of the constants 
E, ν , and the material horizon δ : 
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and the values of the macroelastic parameters as 
functions of the microelastic constants are obtained 
by solving Equations (15): 
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Using the same technique, for plane strain condi-
tions the relations are: 
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For the case of uniaxial stress: 
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and for fully 3D conditions: 
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and 
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We next explore an elastic size effect predicted by 
the micropolar peridynamic theory. 

5 ELASTIC SIZE EFFECT 

As explained in the previous section, the micropolar 
peridynamic strain energy density of a given mate-
rial particle is one-half of the integral of the strain 
energy stored in the micropolar peridynamic links 
connected to the particle.  For particles further than 
the material horizon, δ, from a domain boundary, the 
relationships between c, d, E, and ν are as described 
in the previous section. 

However, Figure 2 shows that a particle can be lo-
cated at a distance less than the material horizon 

 
 
 
 

 (a < δ) from a domain boundary. Particles with a < 
δ have truncated peridynamic horizons, and thus 
have fewer micropolar links than particles within an 
interior region. The peridynamic energy density is 
determined and assumed to be equal to the strain en-
ergy of a transversely isotropic material from the 
classical theory of elasticity, as shown in Fig. 2. The 
macro-elastic properties of the peridynamic material 
are plotted as functions of δξ /a≡  and of the cor-
responding elastic properties (E, ν) of an isotropic 
material in the interior region in Figures 3-6. The 
notation used is shown in Figure 2.  

 
Figure 2.  Peridynamic interior and boundary regions. 
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Figure 3. E1/E versus ξ for varying values of ν. 

 
The fact that the effective Young’s modulus is re-
duced within a boundary layer of thickness δ indi-
cates that as specimen size increases the apparent  
material stiffness increases. This elastic size effect is 
significant for small specimen sizes (or at least for 
specimen sizes not much larger than the peridy-
namic material horizon, δ). It would be interesting to 
see if such a size effect can be observed experimen-
tally in concrete. 
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Figure 4. E2/E versus ξ for varying values of ν. 
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Figure 5. ν12  versus ξ for varying values of ν. 
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Figure 6. ν23  versus ξ for varying values of ν. 

6 MICROPOLAR PERIDYNAMIC MODEL FOR 
CONCRETE UNDER MONOTONIC 
LOADING 

Gerstle & Sau (2004) developed a very simple 
model for concrete by assuming a peridynamic 
model with micro elastic stiffness c and a cut-off 
stretch s*, after which the peridynamic link is bro-
ken. This model significantly under-predicted the 

compression strength and energy absorption capac-
ity of concrete in compression. 

We now propose a more accurate micropolar 
peridynamic model (which is still applicable only to 
concrete under monotonically increasing or decreas-
ing deformation). In this new model, the stiffness of 
a given peridynamic link connecting particles ‘i’ and 
‘j’ depends not only upon the axial stretch, sr, of par-
ticles i and j, but also upon the maximum stretch, st, 
of any other peridynamic link connected to particle 
i. 

As shown in Figure 7, the link remains linearly 
elastic as long as its stretch, sr, exceeds a compres-
sive limit, scomp. However, if sr exceeds a specific 
tensile limit, stens, the tensile peridynamic force re-
mains constant until sr exceeds another specific 
limit, αtensstens, after which the force drops to zero. 

 On the other hand, if sr is less than a compressive 
limit, scomp, two possibilities exist. If the maximum 
transverse stretch, st, is less than stens the link re-
mains linear elastic, while if st, is greater than stens 
the compressive force remains constant until sr ex-
ceeds another specific limit, αcompscomp, after which 
it drops to zero. 

The sensitivity to the transverse stretch, st, arises 
due loss of lateral support and consequent compres-
sive instability of the peridynamic link. The plateau 
in the compressive regime simulates energy dissipa-
tion due to friction. 

To summarize, our micropolar peridynamic 
model for concrete has seven parameters: c, d, δ, 
stens, scomp, αtens, and αcomp. Each of these parameters 
has plausible mechanistic justification at the micro- 
(or meso-) mechanical level. 

As a means of visualizing the results of this 
model, we have made the simplifying assumption 
that a spatially uniform principal strain field, {ε1, ε2} 
exists, with no strain in the third direction.  

To model a typical concrete, we select E = 24.85 
GPa, ν = 0.22, and δ = 2.54 cm, from which we cal-
culate using Eq. (16) c = 3.713x106 GN/m5 and d = 
18.54 GN/m3. We also select stens=0.00014 
scomp=0.001 αtens=2 and αcomp=3. For a uniaxial 
stress condition this model predicts the stress-strain 
relations depicted in Figure 8. 

For the case of uniaxial plane strain behavior, this 
model seems to correctly replicate Young’s 
Modulus, Poisson’s ratio, tensile strength, compres-
sive strength, fracture toughness, and approximately 
the correct shape of the compressive stress-strain 
curve. In addition, biaxial compressive behavior 
seems to be correctly modeled. Most importantly, 
the model is capable of objectively predicting strain 
localizations so that fracturing behavior of speci-
mens of finite size under various loading conditions 
can be studied. 

 
 
 



 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 7. Constitutive Behavior of a Peridynamic Link. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) Overview 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Close Up of Tensile Region 

 
Figure 8. Stress-Strain Relations computed from Plain Strain 
Micropolar Peridynamic Concrete Model. 

7 EXAMPLE 

A peridynamic finite element code was developed 
using MatLab and C++. Using the finite element 
methodology described in Section 3, damage in con-

crete is modeled through a simple maximum stretch, 
s*, tension tension-cutoff (rather than with the more 
accurate model presented in Section 6). With a 
maximum principal strain criterion, membrane ele-
ments (2D elements) are converted as necessary into 
0D elements. Assuming the simplest of microelastic 
damage models described in Gerstle & Sau (2004), 
peridynamic links are broken one by one.  

Figure 9 shows the results of a simulation of a 
specimen in tension. The 2D elements are adaptively 
converted to 0D elements, and then peridynamic 
links between 0D elements are broken one by one. 

The seven-parameter concrete model described in 
Section 6 has not yet been implemented into the fi-
nite element code. 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)           (b) 
 

Figure 9. Plain concrete cylinder subjected to tensile load after 
75 (a) and 150 damage steps (b). 

8 CONCLUSIONS 

The micropolar peridynamic model has been pre-
sented, as well as a finite element method for effi-
ciently obtaining computational solutions to static 
problems. In contrast to the original, central force 
peridynamic model, the micropolar peridynamic 
model is capable of representing elastic materials 
with varying Poisson’s ratios. 

In contrast to classical elasticity, which has two 
constants E and ν, the presented linear elastic mi-
cropolar peridynamic model has three constants: c, 
d, and δ. The material horizon, δ, can be viewed ei-
ther as a free parameter that can be chosen for pur-
pose of computational solution, or as a true material 
constant characterizing the concrete material. In ei-
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ther case, the paper has presented the relationships 
between the classical macro elastic constants E and 
ν, and the three micropolar peridynamic constants c, 
d, and δ. 

The peridynamic model predicts reduced stiffness 
near the domain boundary that classical elasticity 
fails to capture. It would be interesting to determine 
experimentally whether or not concrete laboratory 
specimens exhibit this predicted elastic peridynamic 
size effect.  

We have proposed a displacement-based nonlin-
ear micropolar model which, in addition to c, d, and 
δ, has two tensile (stens and αtens)  and two compres-
sive constants (scomp and αcomp), as shown in Figure 
7. This model seems to accurately predict the known 
types of biaxial behavior, including dilatancy, ten-
sion-softening and fracture energy in the tensile re-
gime as well as compressive strength and toughness 
in the compressive regime. The model could be ex-
tended to model cyclic and time-dependent behavior 
as well. 

The presented approach has the following virtues: 
• conceptual simplicity; 
• predicts a testable (but untested) elastic 

size effect; 
• no preconceived assumption of continuity; 
• continuity is emergent; 
• discrete fracture is emergent; 
• distributed damage is emergent; 
• relatively efficient computational solu-

tion; 
• extensible to large-deformation regime; 
• extensible to time-dependent regime; 
• extensible to represent 3D solid domains, 

plates, shells, etc.; 
• extensible to model reinforced concrete 

structures, including interaction between 
steel and concrete. 

We intend to explore the micropolar model for 
concrete in more detail in the coming months and 
years. 
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