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ABSTRACT: Three-dimensional size and shape effects on concrete fracture are studied by means of a series
of simulations of the fracture behaviour of prisms loaded in three-point bending. The simulations have been
carried out with a simple beam-lattice model. The meso-structure of concrete is directly included in the model
as a three-phase representation comprising aggregate, matrix and the interface between these two phases. Size
effects are studied by varying the prism size in either two (constant thickness) or in three-dimensions. Prisms
both with and without embedded particle structure were studied (particle densities Pk = 0% and Pk = 35%).
Next to that a series of analyses was performed where the shape of the specimen was varied while maintaining
the volume of the structure constant. The analyses show that size and shape effects are conveniently described
by means of a power law between strength and specimen volume.

1 INTRODUCTION

This paper investigates the size and shape effect of
fracture in three-dimensional concrete structures. In
the past, size effect studies are investigated mainly
through the simpler two-dimensional scaling (scaling
in height and length). Full scaling (in three dimen-
sions) with three-dimensional models is from its con-
cept and implementation very difficult and demand-
ing; because of its complexity it is not common nei-
ther in performing laboratory experiments nor in nu-
merical simulations. The fracture experiments, which
are described here, were conducted computationally.
As numerical tool a beam lattice model was used.

A truss lattice was first introduced in the 1940s for
solving problems in elasticity (Hrennikoff 1941); in
the 1990s statistical physicists simulated brittle frac-
ture with a beam lattice model (Herrmann et al. 1989).
Following this, a modified version of this model was
used to simulate fracture experiments for concrete
(Schlangen and van Mier 1992), (Schlangen 1993).
Alterations were made to ensure realistic mechanical
and material properties for concrete. These kinds of
simulations can be done either with a regular config-
uration (i.e. all lattice elements have the same length,
see also Figure 1(a)) or with using a random lattice
(i.e. lattice elements have different element lengths,

see Figure 1(b)); see (Lilliu and van Mier 2003) and
(Man and van Mier 2007).
One major disadvantage in running lattice simula-
tions is the huge computational effort. Because of
that, in the beginning these kind of simulations were
rather simplified (with small numbers of elements).
The models were limited in two dimensions and the
implementation of the microstructure lacked in detail.
This paper uses an object-oriented version of the lat-
tice program, in which a parallel solver is used suit-
able for an unlimited number of parallel processors
(Lingen 2000). With this improvement and with the

(a) Regular lattice (b) Random lattice

Figure 1: Material structure of concrete (Cement Ma-
trix: blue, Aggregates: red and the ITZ: green) after
overlay of the microstructure in a regular (Figure 1(a))
and a random 3D (Figure 1(b)) lattice.
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ongoing development of faster computing systems, it
is now possible to include much more detail into the
microstructure. Moreover 3D analyses can be carried
out within reasonable time span; see (Lilliu and van
Mier 2003), (Man and van Mier 2006) and (Man and
van Mier 2007).
Also size effect study with 3D models is now possi-
ble: In (Van Vliet 2000) and (Man and van Mier 2006)
scaling was in two-dimensions (scaling in length and
height only) and in three-dimensions with a single
constant particle density Pk, while in (Man and van
Mier 2007) the influence of different particle densi-
ties on size effects were investigated.
In this paper we focus on size and shape effects on
concrete fracture, in particular three-dimensional ef-
fects are studied. In the past most studies focused on
2D-size effects, although by keeping the size in one
direction constant leads to a shape variation that usu-
ally is ignored (plane stress to plane strain transition,
see (Van Vliet 2000)).

2 NUMERICAL MODEL
2.1 3D Lattice Model
In the beam lattice model, the material is discretized
as a network of Bernoulli beams, which can be ar-
ranged in either a regular or a random configuration.
The intention of this model is to understand the frac-
ture behavior of concrete in general, in particular soft-
ening behaviour and the stable micro-fracture pro-
cesses leading up to the situation from where soften-
ing starts.
Concrete is on the meso-level (scale range between
10−3 and 10−1 m) a highly heterogeneous material. It
can be defined as a three-phase material: aggregates,
cement matrix and between them the interfacial tran-
sition zone (ITZ). The material structure can be gen-
erated with a dedicated computer program and it is
then overlaid on top of the lattice (see Figure 1).
Fracture is simulated by a sequential removal of a sin-
gle element from the mesh in each step. Until fail-
ure, lattice elements behave linear elastic. Sequen-
tially the lattice element with the most critical (the
highest) stress over tensile strength ratio (σ/ft), will
be removed according to the simple failure law:

σ

ft

=
1

ft

(
N

A
+ α

max(Mi,Mj)

W

)
(1)

A is the cross-section area and W is the section modu-
lus. N is the normal force and Mi, Mj are the effective
bending moments of the nodes i and j. α is a param-
eter, which defines the role of bending in the fracture.
Usually α has a value ranging between 0 and 0.005.

2.2 Overview of Analyses
As mentioned three-dimensional prisms of dif-
ferent sizes subjected to three-point bending are

Figure 2: Case study I: 2D Scaling; see Table 1

Size [mm] # Elements Vol. [mm3]
small 4.375 x 2.5 x 2.5 15073 27.35

medium 8.75 x 5 x 2.5 62533 109.38
large 17.5 x 10 x 2.5 251091 437.5

Xlarge 35 x 20 x 2.5 985133 1750
Table 1: Geometries of the case study I: 2D-scaling;
see Figure 2

simulated and analyzed (see Figure 2 to Fig-
ure 5). All lattice elements have a circular cross
section and the diameter d was set to d =
0.144 mm guaranteeing a Possion’s ratio ν =
0.2. The ratios for the three material phases are:
Eagg/Emat/EITZ = 70000/25000/25000 (Young’s
moduli) and ft,agg/ft,mat/ft,ITZ = 10/5/1.25 (tensile
strength of the lattice elements). The aggregate diam-
eters range from 0.5 mm to 2 mm and the distribution
obeys a Fuller curve.
Different particle densities were used: a particle den-
sity with Pk = 35% in a regular lattice configuration, a
purely homogeneous cement matrix (Pk = 0%), both
in a regular and a random configuration.
The specimen volumes ranges from 13.67 mm3

(4.375 x 2.5 x 1.25 mm, 7831 elements) to 14000
mm3 (35 x 20 x 20 mm, 7448373 elements). Four dif-
ferent cases are investigated: 2D scaling (Figure 2, Ta-
ble 1), 3D scaling (Figure 3, Table 2) on prisms with
a quadratic profile, 3D scaling on prisms with a rect-
angular profile (Figure 4, Table 3) and as a special
case various prisms with identical volumes, but vary-
ing shape (see Figure 5, Table 4).
For the case of using a regular triangular lattice con-
figuration, the element length of 0.25 mm is chosen.
For the case of simulating irregular lattices, the ele-
ment length are randomly distributed between 0.125
mm and 0.375 mm.

Size [mm] # Elements Vol. [mm3]
small 4.375 x 2.5 x 2.5 15073 27.35

medium 8.75 x 5 x 5 122593 218.75
large 17.5 x 10 x 10 974403 1750

Xlarge 35 x 20 x 20 7448373 14000
Table 2: Geometries of the case study II: 3D-scaling
on a quadratic profile; see Figure 3
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Figure 3: Case study II: 3D Scaling; see Table 2

Figure 4: Case study III: 3D Scaling, see Table 3

Even now, performing lattice simulations with this
large number of elements are very time-consuming,
the bottleneck is still the lack of computing power.
The experiments were performed on two different
computer systems: The first system was a Silicon
Graphics Altix 350 with 16 Intel Itanium 2 proces-
sors with clock-speeds from 1.4 to 1.6 GHz and 32
GB of memory. The second one was the massively
parallel processing (MPP) CRAY XT3 computer sys-
tem with 1656 AMD Opteron (1100 single-core and
556 dual-core) processors from CSCS in Manno (TI),
Switzerland.
To determine the most efficient use of processors on
the CRAY, various benchmark simulations were per-
formed. Table 5 state one numerical problem running
from 1 to 1024 parallel processors with a lattice with
974403 elements (Table 2, specimen ’large’). Column
2 shows the parallel speedup (Amdahl’s Law). It is
defined as the quotient of the execution time for 1
processor divided by the execution time for the same
numerical problem parallelized with n processors; the
number simply states how much faster the use of n
processors is compared to 1 processor. Column 3 de-
scribes the parallel speedup between n compared to
n/2 processors. The results point out that the speedup
is perfect up to 64 processors, doubling the num-
bers of processors cuts the computing time nearly in

Size [mm] # Elements Vol. [mm3]
small 4.375 x 2.5 x 1.25 7831 13.67

medium 8.75 x 5 x 2.5 62533 109.38
large 17.5 x 10 x 5 492195 875

Xlarge 35 x 20 x 10 3665013 7000
Table 3: Geometries of the case study III: 3D-scaling
on a rectangular profile; see Figure 4

Size [mm] # Elements Vol. [mm3]
A 11.875 x 4.12 x 4.75 124999 233.7
B 10.875 x 5.8 x 3.5 118535 220.76
C 12.375 x 2.815 x 6.5 122243 226.43
D 8.875 x 5 x 5 122593 221.88
E 16 x 3.7 x 3.7 125241 229.04

(a) medium

Size [mm] # Elements Vol. [mm3]
A 23.75 x 8.25 x 9.5 999988 1861.4
B 21.75 x 11.5 x 7 948280 1750.87
C 25.75 x 5.75 x 12 977924 1776.25
D 17.75 x 10 x 10 974403 1750
E 32 x 7.5 x 7.5 985456 1800

(b) large

Table 4: Geometries of the case study IV; see Figure 5

half. Compared to the simulation running on 1 pro-
cessor, the same problem running on 64 processors is
around 67 times faster. In this specific case the paral-
lel speedup decreases from 128 processors. The use of
larger processors is possible, but usually to simulate
one 3D fracture experiment (over 500000 elements)
64 or 128 processors were used.

Figure 5: Case study IV; see Table 4.

3 RESULTS
3.1 Size Effect Study
Figure 6 represents for lattice simulations a typi-
cal load-displacement diagram for concrete (Table 2,
specimen ’medium’). The enveloping curve describes
a graph, which is similar to the load-displacement
curves found from laboratory experiments. Typical
for lattice-type simulations are the zigzags in the dia-
gram after connecting the single steps: this indicates
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n T (1)
T (n)

T (n/2)
T (n)

1 1 -
2 2.52 2.52
4 4.78 1.89
8 9.41 1.97

16 18.77 1.99
32 35.63 1.90
64 67.06 1.88
128 111.40 1.66
256 190.03 1.71
512 263.24 1.39

1024 300.73 1.14
Table 5: Parallel speedup of the numerical program,
n: number of parallel processors used in one simu-
lation, performed on a lattice structure with 974403
elements on the CRAY XT3

the subsequent loading-unloading during element re-
movals. In the diagram, the typical stages of the frac-
ture processes in concrete are found on the diagram
(Van Mier 2004): (a)-(b) regime of stable microcrack-
ing, (b)-(c) macrocrack growth and (c)-(d) bridging.
From these load-displacement diagrams for concrete
the maximum forces can be measured and as results
the fracture strengths can be calculated according to
the theory of linear elasticity. The different strength
for the various specimens can be gathered for example
in a fracture strengths vs. specimen height diagram
(see for example Figure 7 for Pk = 35%). As result
the size effect on global specimen strength can be ob-
served. There is a reduction of the nominal strength
with larger specimen sizes; similar qualitative obser-
vations can be also seen on the laboratory experiments
and simulations done by van Vliet (Van Vliet 2000).
In terms of σ − H relationship, each set of simu-
lations must be described by means of separate bi-
logarithmic equations, resulting in different slopes

Figure 6: diagram from a 3D concrete prism analyzed
with 122593 lattice elements (Table 2, size ’medium’)
and Pk = 35%. The letters in brackets (a) - (d) show
the transition points between the typical stages in the
fracture process in concrete

Figure 7: logσ− logH relationship for Pk = 35%

Figure 8: logσ− logV relationship for Pk = 35%

(see Figure 7). For the case of Pk = 35% the slope for
2D scaling is 0.5, while for 3D scaling a slope of 0.7
was calculated (Man and van Mier 2006). For the ho-
mogenous cement matrix material (Pk = 0%) slopes
of 0.22 for 2D scaling and of 0.33 for 3D scaling
were obtained for both, regular and random lattices,
although the load-displacement curves, the nominal
strength and the crack patterns differ significantly be-
tween regular and random configurations; for a more
extensive discussion, see (Man and van Mier 2007).
Instead of a specimen height vs. strength relationship,
a specimen volume vs. nominal strength diagram can
be constructed (logσ − logV diagram, see Figure 8
and Figure 9).The main conclusion remains the same:
an increasing specimen volume leads to a reduction
in strength. However, this diagram shows one addi-
tional new observation, which could not be seen in
a logσ − logH-relationship: In that case, all points
from the three case studies (2D and 3D scaling cases)
fall on a single line (Figure 8 for Pk = 35%, Figure 9
for Pk = 0% in a regular and random configuration1).

1Figure 9 shows one difference between using lattices with
regular and random configuration. The strength for regular lat-
tices is significant higher than the random one. The resulting
slopes have similar values: therefore the regression lines are par-
allel.
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Figure 9: logσ− logV relationship for Pk = 0% on a
regular and random configuration

In a logσ − logV relation the behaviour of all struc-
tures of varying volume is captured by using a single
coefficient, which is more convenient than the sepa-
rate equations if each case would be considered sepa-
rately. The question that can be raised now is the fol-
lowing. If not the height, but rather the volume is a
more appropriate parameter in a size effect law, could
it be that shape effects can be treated similarly? This
question will be addressed in the next section.

Figure 10: Typical Load-Displacement diagrams for
3D concrete prisms (Pk = 0%, random lattice,
’medium’) for case study IV, with the geometries A,
B, C and D; see Figure 5

3.2 Shape Effect Study
The fracture strength of a prism loaded in three-point
bending can be written as

σ =
3

2

Fl

bh2
(2)

It can easily be seen that the fracture strength de-
pends on the length, width and height of the con-
sidered prism. We are interested to see what would
happen to the logσ − logV relation when specimen
volumes are considered with varying shapes. For that

Figure 11: Comparison of the nominal strength for
different shapes with identical volumes; case study IV
(medium sized specimen)

purpose five different specimens subjected to three-
point-bending were analyzed (see Table 4 and Fig-
ure 5). The specimens have different proportions (dif-
ferences in length, height and width), but their vol-
umes are kept constant. Two different sizes are fully
scaled (see Table 4), the smaller specimens have
118535 to 125241 lattice elements (see Table 4(a))
while the larger specimens have 948280 to 999988
elements (see Table 4(b)). The fracture experiments
will be performed with Pk = 0% in regular and ran-
dom configurations.
The load-displacement diagrams (Figure 10, simu-
lated with a random medium-sized lattice) for various
geometries show that the maximum loads differ de-
pendent on the specimen shape: the calculated frac-
ture strengths show (Figure 11) that the values are
similar (around 6-7 MPa for random and 12-14 MPa
for regular lattices2), regardless of the shapes consid-
ered here. This may be interesting because the maxi-
mum forces and the geometry are different, but the re-
sulting strength remains the same. This fits to the ob-
servations made in the previous section (i.e. not con-
tradictory). In this study the material properties and
the specimen volume are the only parameters, which
are held constant.
Up to this point the strength for the ’medium’ spec-
imens are quite close and the same as for the ’large’
specimen. For the five different geometries the calcu-
lated strength can be included in Figure 9, resulting
in the new graph shown in Figure 12. In fact, only
two volumes for the different geometries were inves-
tigated, the study needs to be extended (specifically
the addition of larger sizes), and also for other parti-
cle densities Pk.

2Figure 11 also illustrates the difference between simula-
tions done with regular and a random lattices; here: the nominal
strength (like in Figure 9)
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Figure 12: The present calculated nominal strength
for the geometries A-E put on the same diagram on
Figure 9

4 SUMMARY AND CONCLUSIONS
In this paper numerical simulations with a 3D beam-
lattice model were performed. Specimens subjected
to three-point bending were simulated until com-
plete fracture. Various concrete prisms are investi-
gated with a particle density Pk = 35% with regular
lattice and with the homogenous case of a one-phase
cement matrix (Pk = 0%) with regular and random
lattices. The specimen sizes were varied in two- and
three dimensions.
The results from the simulations show that a size ef-
fect exists: a growing specimen height (or volume)
leads to a reduction of the nominal strength σ. The
σ − V relationship can be described by means of a
single power-law, regardless of the three scaling types
used. This stands in contrast to the σ−H relationship,
where for each case study (I to III) separate power-
laws are required.
This lead to the idea to investigate and to compare the
strength of specimens with varying prism sizes while
maintaining their volumes. The results given so far
show that the calculated strengths have similar val-
ues, regardless of the five shapes used, as long as the
volumes were kept constant. On a logσ − logV plot,
the results from the shape analyses fall on the same
lines as the points from the first three case studies (I-
III), see Figure 9. The present study is limited to the
homogeneous case of a cement matrix (Pk = 0%) and
has to be extended for realistic particle densities for
concrete.
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