
1 INTRODUCTION 

Fracturing behavior of quasi-brittle materials and, 
most importantly, the energetic size effect on struc-
tural strength cannot be described through the classi-
cal Linear Elastic Fracture Mechanics (LEFM) be-
cause in quasi-brittle materials the Fracture Process 
Zone (FPZ) length lFPZ (Fig. 1a) is large compared to 
the characteristic size D of the structure. 

The physical reason for this behavior is the crack 
bridging effect of material heterogeneities: as frac-
ture propagates stresses can still be transmitted 
across the crack because the heterogeneities (aggre-
gate pieces in concrete) provide a link between adja-
cent crack surfaces. 

This was clearly recognized by Hillerborg et al. 
(1976), who proposed that the fracture process zone 
be modeled through a cohesive (fictitious) crack law 
characterized by a softening relationship between 
the cohesive (bridging) stress (σ) and the crack 
opening displacement (w). 

The cohesive law has been traditionally defined 
by only two parameters: the tensile strength, ft, 
which identifies the peak of the curve, and the total 
fracture energy, GF, defining the total area under the 
curve (e.g. Hillerborg 1976). More recently it has 
been observed (Guinea et al. 1992) that, at least 
within a certain range of characteristic sizes, only 
the initial part of the softening curve is relevant to 
the structural performance (structural strength). This 
part of the softening curve can be efficiently de-
scribed by the initial fracture energy, Gf, which 

represents the area under the initial tangent of the 
softening curve (Fig. 1b). 

Size Effect in quasi-brittle materials can be also 
effectively described through Bažant’s Size Effect 
Law (SEL, Bažant 1984). The SEL can be derived 
(Bažant & Planas 1998, Bažant 2002) through the 
use of the Equivalent Linear Elastic Fracture Me-
chanics (Equivalent LEFM), in which LEFM equa-
tions are used with reference to an equivalent crack 
which consists of the actual stress-free crack (sharp 
notch or preexisting fatigued cracks) plus a finite 
length cf (critical equivalent crack extension or sim-
ply crack extension) associated with the size of the 
FPZ (Fig. 1a). 

The cohesive crack approach and the SEL have 
been widely accepted among researchers and both of 
them have been extensively used for the simulation 
of crack propagation and size effect for a large vari-
ety of quasi-brittle materials, including concrete. 
The objective of this paper is to present the results of 
recent experimental and computational research ac-
tivity, conducted at the Politecnico di Milano, aim-
ing at the identification of the initial fracture energy, 
Gf, through the use of methods based on measure-
ments of the structural strength of geometrically 
similar specimens of different sizes. 

2 THEORETICAL ASPECTS 

2.1 Bažant’s Size Effect Law 
With reference to a specimen of notch length a0 = 
α0D, the introduction of the concept of an effective 
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crack of length a0+cf into the LEFM equation for the 
nominal stress at failure σN = Κc[Dg(α0+cf/D)]−1/2 
and the subsequent Taylor expansion of the energy 
release rate g(α0+cf/D) ≈ g(α0)+g′(α0)cf/D with reten-
tion of only the linear term, lead to the well known 
Bažant’s Size Effect Law (SEL) 
σN=[EGf/(Dg(α0)+cfg′(α0))]1/2. By using the classical 
Irwin’s equation Kc

2 = EGf , with reference to the 
initial fracture energy Gf , the SEL can be rearranged 
in the form 
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The fitting of the experimental results on maximum 
loads of similar specimens on the basis of Equation 
1, performed with a linear regression, leads to the 
determination of the coefficients a and c of the 
straight line 
y a x c= +  (1a) 

from which the values of the fracture energy Gf = 
g(α0)Ea and of the crack extension cf = cEGf/g′(α0) 
can be calculated. The slope a governs the value of 
Gf and the intercept at the origin c determine the pa-
rameter cf. 
 

 
Figure 1. a) Definition of the fracture process zone length and 
of the crack extension. b) Bi-linear cohesive crack law. c) Size 
effect law. 
 

The use of the initial fracture energy in the 
framework of the Equivalent LEFM may seem ques-
tionable since this theory implicitly assumes a fully 
developed FPZ characterized by a vanishing cohe-
sive stress at the tip of the stress-free crack. Indeed, 
such hypothesis would require the use of the total 
fracture energy GF instead of Gf. However, the SEL 
with Gf coincides with the asymptotic response 
shown by the cohesive crack model (Bažant 2002) 
with linear softening, which, in turn, can be used to 
approximately simulate the response of specimens 
whose strength is only influenced by the initial part 
of the softening law (medium size specimens). 

In order to exploit the equivalence between the 
SEL and the asymptotic behavior of the cohesive 
crack model it is useful to multiply both sides of 
Equation 1 by the square of ft (tensile strength), and, 
introducing the concept of characteristic length l1 = 
EGf/ft

2, to rewrite the SEL as follows 
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which represents a straight line in the plane Y = 
(ft/σN)2, X = D/l1 (Fig. 1c). 

2.2 Cohesive Crack Law 
The propagation of a cohesive crack may be mod-
eled through finite element calculations based on a 
given σ - w relationship. With very accurate mesh 
layouts in the region of crack propagation it is possi-
ble to detect both the maximum load and the exten-
sion of the corresponding fracture zone for a given 
specimen dimension D. 

If one assumes a linear expression for the σ - w 
relationship (Fig. 1b, line with white triangles), the 
resulting nominal stress at failure (structural 
strength) satisfies a unique relation which can be ex-
pressed in the form σN  = ftψ(D/l1), in which the 
function ψ depends on the geometry of the specimen 
(Planas, Guinea & Elices 1997) and can be obtained 
through an optimum fitting of numerical results. We 
can then define a “Cohesive Crack Size Effect Law” 
(CCL) in the form  
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Although, for concrete, linear σ - w relationships 
have been adopted in the past, it appears that a bilin-
ear law with an initial (up to one fifth of the tensile 
strength) steep slope followed by a tail with mild in-
clination (Fig. 1b, white and black triangles) can bet-
ter fit available experimental data. 

However, at the peak load the material in the sof-
tening regime reaches the tail only for large enough 
specimens. Consequently, Equation 3 can be used to 
model the structural strength of small to medium 



size specimens (“small”, “medium”, and “large” re-
spect to the characteristic length l1). 

It can be verified that Equation 3 has as a straight 
line asymptote in the plane Y = (ft/σN)2, X = D/l1. 
Since the SEL is a straight line in the same plane, it 
is always possible to make the SEL coincide with 
the CCL asymptote. Furthermore, since the SEL 
embeds the effect of different specimen shapes and 
boundary conditions through the dimensionless en-
ergy release rate g(α), if the crack extension cf is 
proven to be a material property, it is possible to es-
tablish a unique relationship between cf and the pa-
rameters of the cohesive law. We will verify in the 
following that cf can be considered proportional to 
the characteristic length l1 and that the coefficient of 
proportionality is approximately constant regardless 
of specimen shape and boundary conditions (a simi-
lar result was obtained by Planas & Elices 1993).  

In most of the situations, the convergence of the 
CCL to the asymptote is very fast and so the SEL 
represents, in a certain range of sizes (Fig. 1c), a 
very accurate approximation of the CCL (Bažant et 
al. 2002). In this situation both laws should provide 
approximately the same initial fracture energy and 
tensile strength when used to identify those parame-
ters from experimental data relevant to size effect.  

In the next sections we will verify this statement 
and its limitations, and we will quantify the limits of 
applicability of the linear cohesive law with refer-
ence to an extensive experimental and computational 
effort recently conducted at Politecnico di Milano. 
 

 
Figure 2. Typical a) notched specimen geometry, b) finite ele-
ment mesh resolution, and c) boundary conditions considered 
in the simulations. 

2.3 Numerical Simulations 
The numerical simulations were performed with a 
finite element code, in which the cohesive crack law 
is implemented through the use of zero-thickness in-
terface elements (Carlucci 2003). A great deal of ef-
fort was put into the construction of very refined 
meshes in the region of the crack propagation (Fig. 
2b). These meshes were designed in order to give an 
accurate representation of the stress profile in the 
FPZ and to accurately calculate the maximum load. 

Three kinds of tests were considered: three point 
bending (TPB), single notch traction (SNT), and 
double notch traction (DNT) (Fig. 2c). The speci-
mens were rectangular plates (Fig. 2a) having thick-
ness B = 80 mm, depth D = 60, 120, 240, 480, 720, 
960, 1440, 1920, and 3840 mm, length S = 4D, and 
notch length a0 = α0D, with α0 = 0.3. For all sizes, 
the notch was kept of constant width (3 mm) and 
constant curvature at the tip. The values adopted for 
the mechanical properties of the material were E = 
30000 N/mm2, ν = 0.2, ft = 3 N/mm2, Gf = 0.030 
N/mm (linear softening), l1= E Gf  / ft

2 = 100 mm. 
For the TPB specimens, the finite element calcu-

lations yielded, for every depth D, the nominal stress 
at failure σN = 3PmaxS/(2BD2) and the stress distribu-
tion along the ligament (Fig. 3a), from which the 
length of the fracture process zone lFPZ and the ten-
sile stress at the tip of the notch σtip (Fig. 3c and 3d, 
respectively) could be determined. 

The plot of Y = (ft/σN)2 as a function of X = D/l1, 
reported in Figure 3b, shows the presence of an as-
ymptote Y = AX+C, with A = 1.021 and C = 2.036. 
The slope of the asymptote (obtained by passing a 
straight line through the last two points of the dia-
gram) has a value (1.021) which practically coin-
cides with the value of g(α0) = 1.0247 reported by 
Tada et al. (1985) for TPB specimens. This confirms 
that the SEL and the CCL asymptote have the same 
slope. It has been checked that the slope of the line 
which connects the last two points of the CCL data 
points differs from the actual slope of the asymptote 
by less than 1%. 

The length lFPZ of the fracture process zone in-
creases with D/l1, as shown in Figure 3c, reaching a 
horizontal asymptote given by lFPZ,∞ = 68 mm (lFPZ,∞ 
= 67.96 mm for D = 3840 mm). In addition, it is also 
possible to calculate the crack extension cf from the 
intercept C=2.036 of the asymptote: cf =CE Gf /g′(α0) 
=38.8 mm. 

The stress at the notch tip decreases with D/l1, 
reaching a value of σtip/ft = 0.05 for D = 3820 mm. 
However, from Figure 3d it appears that the linear σ-
w relationship ceases to be valid for values of D/l1 of 
around 5.8 for which σtip/ft = 0.2. A bilinear σ-w rela-
tionship would increase the value of lFPZ, change the 
shape of the stress distribution in the FPZ (Fig. 3a), 
and make the curve (ft/σN)2 deviate from the asymp-
tote for high values of D/l1, as shown in Figure 1c. 



 
Figure 3 a) Typical stress profile in the FPZ. b) CCL size effect curve and its asymptote. c) Normalized FPZ length. d) Normalized 
crack tip stress at the peak load. 
 

The numerical calculations have been repeated 
for single and double-notched traction specimens of 
the same dimensions. Table 1 (Auriemma & 
Avogadri 2005) summarizes the results obtained for 
the three types of loading. 
 
Table 1a ___________________________________________________ 
 A C g(α0) g'(α0) ___________________________________________________ 
TPB 1.021 2.036 1.024 5.246 
SNT 2.602 8.020 2.590 19.64 
DNT 1.184 1.469 1.190 3.988 ___________________________________________________ 
 
Table 1b ___________________________________________________ 
 lFPZ,∞ lFPZ,∞/l1 cf cf/l1 cf/lFPZ,∞ 
 mm  mm   ___________________________________________________ 
TPB 68 0.68 38.8 0.388 0.57 
SNT 70 0.70 40.7 0.407 0.58 
DNT 71 0.71 36.8 0.368 0.52 ___________________________________________________ 
 
From Table 1 it appears that there is a consistent 
agreement between the predictions of the CCL (with 
linear softening) and the SEL. The length of the 
fracture process zone approaches a value lFPZ,∞ 
which is practically independent of the loading type 
and can therefore be regarded as a material property, 
as is the case for the equivalent crack extension cf. 

The ratio between the crack extension cf and the 
asymptotic length of the fracture process zone lFPZ,∞ 

is very close to the value (0.5) proposed by Bažant 
& Planas (1998). 

Table 1b shows also that cf/l1 = 0.39 is a good ap-
proximation for all three types of loading (Bažant & 
Planas 1998, reported 0.42). The previous observa-
tion confirms that a unique relationship between the 
SEL parameters (Gf , cf) and the cohesive crack pa-
rameters (Gf , ft) can be then assumed. In particular, 
it is possible to compute the tensile strength from the 
SEL parameters ft = (0.39 E Gf / cf)1/2. In the authors’ 
knowledge, this is the first time that this procedure 
to identify ft has been analyzed. 

3 TESTING OF FRACTURE PARAMETERS 

A series of experimental investigations have been 
conducted at the Politecnico di Milano with the pur-
pose of determining the fracture characteristics re-
lated to the initial part of the σ - w curve, i.e. the part 
of the curve which can be modeled with a linear re-
lationship, the parameters of which are ft and Gf. For 
different concrete compositions, besides three point 
bending specimens, also traction and Brasilian 
specimens were tested. We will report here the test 
results relative to the TPB specimens, in order to 
analyze the predictions of the SEL and CCL and 
evaluate their statistical reliability. 



The characteristics of the four concrete batches 
are summarized in Table 2. 
 
Table 2 ___________________________________________________ 
 Aggregate Cement  w/c E f′c    _________  ______________ 
 Type da Portland Quantity    
  mm  kg/m3  N/mm2 N/mm2
___________________________________________________ 
N A 16 325 300 0.60 24200 28.5 
S F 16 325 570 0.44 28600 54.8 
B A 16 325 330 0.55 32680 33.7 
C A 16 325 380 0.50 28690 49.6 ___________________________________________________ 

3.1 Three Point Bending Tests 

3.1.1 Concrete “N” 
The specimens tested (Fig. 2a) are characterized by a 
ratio S/D = 8/3, α0 = 0.3, notch width 3 mm, depth D 
= 120, 180, 240 mm and thickness B = 80 mm. The 
loading rate adopted is σN = 0.012 N mm–2 sec–1. For 
each size, a series of three specimens was tested. 
The mean values of σN at failure are reported in Ta-
ble 3 (Taini 2002), together with their coefficient of 
variation ω. 
 
Table 3 ___________________________________________________ 
D σN ω 
mm N/mm2 % ___________________________________________________ 
120 2.07 6.15 
180 1.77 7.53 
240 1.62 3.35 ___________________________________________________ 
 

The identification of the SEL parameters form the 
mean values in Table 3 can be done through a linear 
regression line (Eq. 1a) y = ax+c, in which y = 1/σN

2 
and x = D, obtaining a = 0.001228, c = 0.09020, 
from which Gf

SEL = g(α0)/Ea = 0.0345 N/mm and 
cf

SEL= cEGf
SEL/g′(α0) = 14.35 mm, ft

SEL = (0.39 
EGf

SEL
 /cf

SEL)1/2 = 4.76 N/mm2, and l1
SEL= 36.78 mm. 

 

 
Figure 4. Identified SEL and CCL for concrete “N”. 

 
The identified SEL is plotted in Figure 4. 
Let us analyze now the same results through the 

cohesive crack model (with linear softening), adopt-
ing as function ψ the expression proposed by Planas 
et al. (1997) for three point bending specimens (cal-
culated for the given value of α0) 
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where z = D / l1
CCL. 

Each experimental mean value of σN gives rise in 
the (ft, Gf) plane to a different curve (Fig. 5b). By 
minimizing the sum of the squares of the errors in 
fitting Equation 4, one obtains the values ft

CCL = 4.23 
N/mm2, Gf

CCL = 0.0367 N/mm. Figure 5a shows the 
estimated errors in σN with respect to the model in 
Equation 4, and Figure 5c shows the curves corre-
sponding to the σN values predicted by the model. 
The observation that the interceptions of the various 
curves occur with slopes which are very close indi-
cates (as pointed out by Planas et al. 1999) that the 
identification process may be, in principle, ill-
conditioned and thus very sensitive to the unavoid-
able statistical scatter of the experimental data. 

The CCL size effect curve is shown in Figure 4 as 
a dashed line. Its asymptote differs only slightly 
from the SEL. The results of the analysis of concrete 
“N” are summarized in Table 4. 

The agreement between the SEL-scale and the 
CCL-scale in Figure 4 suggests that the two optimi-
zation procedures are basically equivalent. The dif-
ference between the identified values of the initial 
fracture energy and tensile strength is about 6% and 
13%, respectively. 

The smallest experimental ratio D/l1 is larger than 
2.5 and so the difference between SEL and CCL is 
very small. The largest experimental ratio D/l1 lies 
between 5.14 and 6.5. As a consequence, the stress 
at the notch tip could be slightly smaller than the 
limit of ft/5 (for which D/l1=5.8) justifying the slight 
deviation from the linearity of the third experimental 
data point. 

 
Table 4 ___________________________________________________ 
 Gf cf ft l1 
 N/mm mm N/mm2 mm ___________________________________________________ 
SEL 0.0345 14.35 4.76 36.78 
CCL 0.0367 18.18 4.23 46.63 ___________________________________________________ 

 
The obtained values for the crack extension cf  

(14.35 mm from the SEL and 18.18 mm from the 
CCL) are of the order of magnitude of the maximum 
aggregate size. At first sight, this result seems quite 
unusual and counterintuitive since cf is associated to 
the size of the fracture process zone. A possible in-



terpretation of this result can stem from the meso-
scale analysis of the fracture process. 

In section 5, by using a two-scale procedure and a 
meso-scale lattice model, it will be demonstrated 
that the initial fracture energy basically coincides 
with the meso-level mode I fracture energy. In the 
aforementioned lattice model (see e.g. Cusatis et al 
2003a), the mesolevel fracture energy is used to re-
produce the dissipation phenomena that occur in the 
matrix (cement paste and/or fine mortar) between 
coarse aggregate pieces. These phenomena (and so 
the meso-level fracture energy) are necessarily asso-
ciated with a meso-scale fracture process zone 
whose size can be reasonably assumed of the order 
of magnitude of the maximum aggregate size. As a 
consequence, it is reasonable to consider the crack 
extension cf associated with this meso-scale FPZ in-
stead of the macro-scale FPZ, whose size is expected 
to be several times the maximum aggregate size. 

We have based the previous analysis on the mean 
values of the test results for each dimension D. In 
order to assess the variability of the experimental 
values of σN (typically three for each D) and the sta-
tistical reliability of the parameters obtained with the 
optimization procedure, we performed “bootstrap” 
resampling (Efron and Tibshirani 1993) of the origi-
nal sets of test results. One thousand resampled data 
sets were generated by drawing with replacement 
from the sets of σN (typically three) measured for 
each dimension D. Values of σN corresponding to 
different D were drawn independently from each 

other. The mean of the resampled values of σN corre-
sponding to each D was used in the optimization, 
which was repeated for each of the 1000 bootstrap 
resamplings of the data. This procedure allowed us 
to quantify the relationship between the typical 
variation in the experimental measures of σN and the 
resulting variations of the optimized parameters ft 
and Gf, without making any assumption about the 
underlying distributions. 

Due to the asymmetrical shape of the observed 
distributions of the optimized parameters (Fig. 6a,b), 
we chose to report the median, the 15th percentile 
and the 85th percentile of each distribution, instead 
of the mean and standard deviation (the 15th percen-
tile and the 85th percentile define an interval, posi-
tioned around the median, capturing 70% of the ob-
served outcomes of the optimized parameters – 
analogous to mean ± standard deviation for a normal 
distribution). 

The value of the medians, Gf
m = 0.0364 N/mm 

and ft
m = 4.2673 N/mm2, were very similar to the 

values obtained with the original set of data (we will 
see that this happens for all concretes). However, the 
values of the 15th and 85th percentiles showed large 
percentage deviations relative to the medians (Gf

15 = 
0.029 N/mm (–21%), Gf

85 = 0.050 N/mm (+37%), 
ft

15 = 3.057 N/mm2 (–28%), ft
85 = 7.152 N/mm2 

(+68%)), indicating poor precision associated to es-
timating Gf and ft using the CCL for this type of 
concrete. 
 

 
Figure 5. a,d) Experimental data (circles) and CCL-based least-squares fits (lines) for concretes “N” (a) and “C” (d). b,e) ft - Gf 
curves based on experimental pairs (D, σN) for concretes “N” (b) and “C” (e). c,f) Same as in b,e, but using values of σN predicted 
by the model. 
 



We repeated the procedure for the SEL, calculat-
ing for each bootstrap resampling the parameters Gf 
and cf predicted by the SEL and examining their dis-
tributions (Fig. 6c,d). Again the medians Gf

m = 
0.0345 N/mm and cf

m = 14.414 mm matched very 
closely to the values obtained directly from the 
original set of data. For the SEL, however, the 15th 
and 85th percentiles (Gf

15 = 0.0301 N/mm (–13%), 
Gf

85 = 0.0409 N/mm (+19%)) indicate a somewhat 
smaller variability for Gf with respect to the CCL. 
The values (cf

15 = 7.66 mm (–47%), cf
85 = 23.88 mm 

(+66%)) show a similar dispersion for cf compared 
with the parameter ft of the CCL. 
 

 
Figure 6. Concrete “N”: histograms of the distributions of the 
optimized parameters across 1000 bootstrap resamplings of the 
original data sets. a,b) CCL; c,d) SEL. Diamonds: median val-
ues. Triangles: 15th and 85th percentiles. 
 

 
Figure 7. Identified SEL and CCL for concrete “N”. 

3.1.2 Concrete “S” 
The geometry and the number (3) of the specimens 
is the same as in concrete “N”. The mean values of 
the nominal stress σN at failure and their coefficient 
of variation ω are listed in Table 5 (Taini 2002). 
 
Table 5 ___________________________________________________ 
D σN ω 
mm N/mm2 % ___________________________________________________ 
120 2.50 2.46 
180 2.13 2.84 
240 1.98 4.75 ___________________________________________________ 
 
Table 6 ___________________________________________________ 
 Gf cf ft l1 
 N/mm mm N/mm2 mm ___________________________________________________ 
SEL 0.0453 16.99 5.20 43.57 
CCL 0.0482 21.95 4.78 56.30 ___________________________________________________ 
 

For the SEL, the linear regression line has pa-
rameters a = 0.00079 and c = 0.06874, which lead to 
the values summarized in the first row of Table 6. 
Instead, the second row of Table 6 shows the results 
obtained through the nonlinear optimization of 
Equation 4. Figure 7 shows that the asymptote of the 
CCL curve differs very slightly from the SEL. 

These results appear very similar to those ob-
tained for concrete “N” and so the same conclusions 
can be drawn.  

The median values of the optimized parameters 
(CCL) obtained from bootstrapping were Gf

m = 
0.0482 N/mm and ft

m = 4.787 N/mm2. The percent-
age deviations from the median of the 15th and 85th 
percentiles were (–16%, +26%) for Gf and of (–18%, 
+25%) for ft, smaller values than those obtained for 
concrete “N”. The SEL gave median values of Gf

m = 
0.0452 N/mm, cf

m = 16.76 mm, with deviations of (–
15%, +19%) for Gf and of (–41%, +52%) for cf, 
slightly smaller than for concrete “N”, but still un-
satisfactory. The distributions appear more symmet-
ric than those for concrete “N” (not shown). 

3.1.3 Concrete “B” 
Also for concrete “B” the geometry and the number 
(3) is the same as in concrete “N”. The mean values 
of the nominal stress at failure are reported in Table 
7 (Barcillesi and Baroni 2003). 
 
Table 7 ___________________________________________________ 
D σN ω 
mm N/mm2 % ___________________________________________________ 
120 2.69 1.84 
180 2.38 1.28 
240 2.22 3.56 ___________________________________________________ 
 

The parameters of the linear regression line for 
the fitting of the SEL have values a = 0.0005336 and 



c = 0.07634, with the parameters summarized in the 
first row of Table 8. The optimization of the CCL 
(Eq. 4) produces, instead, the parameters reported in 
the second row of Table 8. 

In this case the agreement between the SEL and 
the CCL is very poor. The differences between the 
identified initial fracture energy and tensile strength 
with the two methods are about 18% and 30%, re-
spectively. The crack extensions and the characteris-
tic lengths computed through the two methods differ 
of almost 100%. The reason of this discrepancy is 
clearly shown by Figure 8: the SEL does not coin-
cide with the asymptote of the CCL because the ex-
perimental ratios D/l1 lie in the range of values for 
which the CCL curve deviates significantly from the 
CCL asymptote. 
 
Table 8 ___________________________________________________ 
 Gf cf ft l1 
 N/mm mm N/mm2 mm ___________________________________________________ 
SEL 0.0588 27.94 5.18 71.65 
CCL 0.0719 47.52 3.97 121.84 ___________________________________________________ 
 

The median values of the optimized parameters 
(CCL) obtained from bootstrapping were Gf

m = 
0.0740 N/mm and ft

m = 3.9135 N/mm2. The percent-
age deviations from the median of the 15th and 85th 
percentiles were (–16%, +22%) for Gf and (–10%, 
+12%) for ft. The SEL yielded median values of Gf

m 
= 0.059 N/mm and cf

m = 28.284 mm, with deviations 
of (–11%, +13%) for Gf and of (–23%, +26%) for cf. 
Overall, the distributions are more symmetric and 
the dispersion is smaller compared to concretes “N” 
and “S”. 
 

 
Figure 8. Identified SEL and CCL for concrete “B”. 

3.1.4 Concrete “C” 
The geometry of the specimens remained unchanged 
for concrete “C”, except for the depths (D = 120, 
200, and 320 mm) and the number of specimens 
(four for each depth D). The mean values of σN at 
failure are listed in Table 9 (Colombo 2004) together 
with their coefficient of variation. 
 
Table 9 ___________________________________________________ 
D σN ω 
mm N/mm2 % ___________________________________________________ 
120 2.67 4.47 
200 2.40 3.86 
320 2.16 5.56 ___________________________________________________ 
 
Table 10 ___________________________________________________ 
 Gf cf ft l1 
 N/mm mm N/mm2 mm ___________________________________________________ 
SEL 0.0986 53.27 4.55 136 
CCL 0.1526 117 3.07 300 ___________________________________________________ 
 

The parameters of the linear regression line are a 
= 0.000362 and c = 0.09875, from which the pa-
rameters appearing in Table 10 (first row) can be ob-
tained. The second row of Table 10 shows, instead, 
the parameters identified through the CCL. Again, as 
in the case of the concrete “B” the difference be-
tween the parameters identified through the two 
methods is very large. The difference in terms of ini-
tial fracture energy and tensile strength is 35% and 
48%. The characteristic length associated with the 
CCL is more than twice the one associated with the 
SEL. Similarly to the case of concrete “B” the rea-
son of this discrepancy is that the experimental ra-
tios D/l1 lie in a range in which the CCL curve devi-
ates from the CCL asymptote (see Fig. 9). 
 

 
Figure 9. Identified SEL and CCL for concrete “C”. 
 



It is interesting to point out that in this case the 
experimental results are particularly close to the pre-
dictions of the cohesive crack law, as demonstrated 
by Figures 5d,e and f. 

The median values of the optimized parameters 
(CCL) obtained from bootstrapping were Gf

m = 
0.1566 N/mm and ft

m = 3.0539 N/mm2. The percent-
age deviations from the median of the 15th and 85th 
percentiles were (–28%, +49%) for Gf  and (–12%, 
+14%) for ft. The SEL yielded median values of Gf

m 
= 0.0991 N/mm and cf

m = 53.94 mm, with deviations 
of (–18%, +25%) for Gf and of (–30%, +39%) for cf. 

4 DIRECT MEASURENT OF STRESS 
SEPARATION RELATION 

We have seen that the process of identifying the pa-
rameters of the cohesive crack law from overall 
measurements of the maximum load is affected by a 
significant statistical uncertainty. Also, more direct 
methods which involve strain gage measurements on 
specimens under a pure tensile loading encounter 
technical and interpretative difficulties. A more ac-
curate picture can be obtained from local measure-
ments of the displacement field through optical in-
terferometry with laser light (Cedolin, Dei Poli and 
Iori 1987), carried out by analyzing the moiré fringe 
pattern produced by a grid photographically im-
pressed on the specimen surface. With this technique 
the distances of the fringes give a measure of the de-
formation, while the number of superimposed 
fringes indicates the value of the crack opening. 

The specimen used was a single notched plate 
under tension. The contours of equal deformation at 
a loading state close to failure, depicted in Figure 
10a, clearly indicate the extension of the fracture 
process zone, the lower part of which is close to a 
complete unloading. The strain distribution along the 
cross sections E-E and D-D are shown in Figure 
10b,c, together with the crack opening displacement 
(lower part of Fig. 10c). From the observed strain 
and separation distributions corresponding to differ-
ent loading stages, the parameters σ, η and ηR (Fig. 
11) of the local stress-strain and stress-separation re-
lationships were identified The values obtained for 
the fracture energies Gf′ = 0.004 N/mm due to mi-
crocracking and Gf″ = 0.070 N/mm due to crack 
separation confirm the validity of the original 
Hillerborg’s assumption of incorporating Gf′ into 
Gf″. The value of the maximum tensile stress σ = 4.0 
N/mm2 was larger than the tensile strength measured 
from tensile tests (3.1 N/mm2) and the maximum 
measured crack opening was η = 35 μm. 

We introduced the constitutive law so obtained in 
the cohesive crack finite element model previously 
described, finding a maximum axial load of 9258 N, 
astonishingly close to the measured 9244 N. The 
contours of equal deformations and the distributions 

of strain and opening displacement along the cross 
sections E-E and D-D (Fig. 10d,e,f) appear very 
similar to the experimental ones. 
 

 
Figure 10. a) Equal strain contours and developing crack. b,c) 
Strain distributions and crack opening profile. d,e,f) Equal 
strain contours, strain distributions and crack opening profile 
from finite element analysis. 
 

 
Figure 11. Stress – crack opening displacement relationship 
identified in Cedolin, Dei Poli & Iori (1987). 

5 MESOLEVEL MODELING OF FRACTURE 

In this section typical experimental procedures used 
for the characterization of the fracturing behavior of 
concrete, namely single notched specimens sub-
jected to tensile loading and three-point bending, are 
analyzed on the basis of the Confinement-Shear Lat-
tice (CSL) model, which is a mesolevel model re-



cently developed by the authors (Cusatis et al 2003a, 
Cusatis et al 2003b, Cusatis et al 2006, Cusatis & 
Cedolin 2006). Through a two-scale procedure an 
equivalent macroscopic cohesive crack law is ob-
tained from the meso-level response in order check 
the variability of the fracturing properties of con-
crete with specimen size and loading conditions. 

5.1 Two-scale Identification of the Cohesive Law 
Previous studies (e.g. Cusatis et al 2006) have dem-
onstrated that the CSL model is able to simulate ac-
curately the propagation of mode I and mixed mode 
fracture propagation in concrete. Figure 1a shows a 
typical simulation of a mode I fracture propagating 
from the tip of a preexisting notch. 

The fracture initiates at the notch tip and propa-
gates throughout the ligament. The analysis of the 
numerical response shows that the fracture process is 
characterized by the propagation of a system of 
mesolevel cracks (contact areas of the lattice ele-
ments) that eventually coalesce in a single localized 
crack. Accordingly, in the initial stage of the fracture 
process the energy is dissipated in a band of finite 
width (crack band). This behavior is well known ex-
perimentally and it has motivated the formulation of 
the crack band model (Bažant & Oh 1983). 

The aim of the present analysis is the identifica-
tion of an equivalent cohesive crack that lumps the 
behavior of the FPZ in a zero thickness cohesive 
fracture running along the ligament. This goal can be 
achieved by adopting the following procedure. The 
specimen is subdivided into stripes parallel to the di-
rection of the applied load. These stripes discretize 
the ligament into segments of length h (Fig. 12b). 
For each ligament segment it is possible to compute 
the dissipated energy per unit ligament area gd that 
would be dissipated by the propagation of an equiva-
lent cohesive macro-crack, and the cohesive stress 
σch. The energy gd is computed by summing up the 
contributions of the fractured lattice elements be-
longing to a generic stripe. The cohesive stress is 
calculated from the components in the direction of 
the applied load of the lattice forces crossing the 
ligament. Furthermore, the macro-crack opening dis-
placement w (opening profile of the equivalent cohe-
sive crack) can be calculated by observing that it 
represents the work-conjugate kinematic quantity of 
the cohesive stress. Thus, the increment of the dissi-
pated energy is the work done by the cohesive stress 
for an increment of the crack opening, dgd = σch dw. 
This differential equation can be solved for w under 
the initial condition w(0) = 0 in order to obtain the 
function w(gd) that gives the crack opening as func-
tion of the dissipated energy. By repeating the pre-
ceding procedure for each loading step we obtain a 
parametric representation of the equivalent cohesive 
crack law, σch(gd) - w(gd), at each discrete point 

along the ligament. In Cusatis & Cedolin (2006) it 
has been shown that an optimum fit of these numeri-
cal cohesive crack laws can be obtained by assuming 
a cohesive crack law with an initial plateau followed 
by a smooth curve consisting of the sum of a straight 
line and an exponential function. 

The initial plateau simulates the energy dissipated 
in the FPZ before the propagation of a real macro-
crack. From a rigorous point of view, this energy 
should be taken into account by assuming a plastic 
hardening behavior of the stress-strain relationship 
of the intact concrete (Fig. 11 from Cedolin et al. 
1987). Nevertheless, this approximation is reason-
able because the amount of this energy is usually 
negligible compared to the energy dissipated during 
the entire fracture process. Regarding the tail of the 
identified softening curve, it is worth pointing out 
that the linear evolution is due to the effect of the 
aggregates bridging the crack surfaces and it does 
not depend on the constitutive law at the mesolevel, 
which is purely exponential (Cusatis et al 2003a). 
Once the cohesive law is identified, it is also possi-
ble to calculate the initial and total fracture energy 
(Gf and GF in Figure 1b). 
 

 
Figure 12. a) Typical result of a mesolevel simulation of mode 
I fracture propagation. b) Identification of cohesive stresses 
and dissipated energy per unit ligament area. 

5.2 Size and Boundary Condition Dependence of 
The Fracture Energies 

Experimental data available in the literature (e.g. Hu 
& Wittmann 1992) show that the total fracture en-
ergy depends on specimen size and boundary condi-
tions. In order to study these effects the previous 



identification procedure has been repeated for two 
sets of geometrically similar specimens. 

The first set consists of square notched specimens 
of side D and notch a = D/5, subjected to tension 
under displacement control (SN test). The second set 
is composed by rectangular notched plates of depth 
D, length equal to 2.5D, and notch equal to D/5, 
loaded in displacement control by a three point 
bending test setup (TPB test). In the numerical simu-
lations of the TPB tests only the central part of the 
specimen is modeled by means of the lattice model 
while conventional finite elements are employed for 
the lateral parts where the behavior is expected to be 
linear elastic. 

For both sets the simulation of specimens with 
characteristic size equal to D = 100 mm (small, S), 
D = 200 mm (medium, M), and D = 300 mm (large, 
L) has been carried out. Three specimens with dif-
ferent mesostructure are analyzed for each size. All 
the specimens had thickness b = 50 mm. 

The results obtained by the SN test are shown in 
Figure 13a where the identified values of the initial 
and total fracture energy are plotted as functions of 
the position along the ligament. In order to compare 
results for different sizes the dimensionless coordi-
nate x/D is employed. 

The initial fracture energy Gf is constant over the 
entire ligament, and, regardless the size of the 
specimen (Cusatis & Cedolin 2006) it basically co-
incides with the mesolevel fracture energy for mode 
I crack propagation. 

On the contrary, the total fracture energy GF var-
ies along the ligament and it is size dependent. For 
each specimen size, the total fracture energy tends 
first to increase, moving from the notch tip to the in-
terior of the specimen, and then to decrease while it 
propagates towards the opposite boundary. This re-
sult suggests that the asymptotic length of the FPZ 
(lFPZ), which is the length of a fully developed FPZ 
characterized by a stress profile varying from the 
tensile strength to zero, is larger than the specimen 
ligament even for the largest specimen. This fact can 
be further verified by estimating lFPZ by means of the 
equivalent linear elastic fracture mechanics (Bažant 
& Planas 1998). For the concrete properties ana-
lyzed in this paper Cusatis & Cedolin (2006) have 
estimated lFPZ between 1.14 m and 2.85 m. This 
means that lFPZ is one order of magnitude larger than 
the ligament of the largest specimen, confirming the 
impossibility of obtaining a fully developed FPZ in 
specimens of laboratory size. 

As far as the effect of the size is concerned, the 
results that the mean value of total fracture energy 
along the ligament increases with the size of the 
specimen. This finding is in agreement with the ex-
perimental data reported by Hu & Wittmann (1992). 
Figure 13b show the profiles of fracture energies 
identified by the TPB tests. These results indicate 
that, also for the TPB tests, the initial fracture energy 

is constant along the ligament (with values equal to 
the ones identified from the SNT test) and size inde-
pendent. On the contrary, the total fracture energy 
varies along the ligament and with the size of the 
specimen. Furthermore, comparing the GF-profiles 
obtained from the two different test setups but for 
the same characteristic specimen size, one can see 
that the total fracture energy also depends consid-
erably on the type of boundary conditions. The value 
of GF identified from the SN test is, on average, lar-
ger than the one from the TPB test because in the 
latter the evolution of the FPZ is more hampered by 
the compressed part of the ligament. 
 

 
Figure 13. Profiles along the ligament of initial and total frac-
ture energy for a) SN test, and b) TPB test. 

6 CONCLUSIONS 

From the analysis of the experimental and computa-
tional results reviewed in this paper the following 
conclusion can be drawn: 
 
1) The classical Bažant’s size effect law is equiva-
lent to the asymptotic behavior given, for large sizes, 
by the cohesive crack model. 
 



2) Exploiting this equivalence it is possible to estab-
lish a unique relationship between the SEL parame-
ters and the cohesive crack law parameters. 
 
3) This relationship permits the identification of the 
initial fracture energy and the tensile strength from 
the SEL parameters provided that the SEL is opti-
mized on the basis of specimens whose values of 
D/l1 lie in the range 3 to 6, at least for TPB tests with 
shape similar to the ones considered in this study. 
 
4) For values of D/l1 less than 3 the errors associated 
with the use of the SEL, especially in terms of ten-
sile strength, are unacceptable and the CCL must be 
used. 
 
5) For values of D/l1 greater than 6 both methods 
cannot be used. 
 
6) Although the precision of the estimates of the 
fracture parameters obtained with both methods is 
low, the initial fracture energy is more reliably esti-
mated using the SEL (within the range of its appli-
cability). 
 
7) The basic assumptions of the cohesive crack 
model are confirmed by the direct observation of the 
displacement field at the fracture front. 
 
8) The initial fracture energy is strictly connected to 
the mesolevel mode I fracture energy. 
 
9) Its identification can be performed by analyzing 
laboratory specimens. 
 
10) The total fracture energy identified form labora-
tory specimens strongly depends on specimen size 
and boundary conditions. 

REFERENCES 

Auriemma, M. & Avogadri, M. 2005. Sui Metodi di Misura 
delle Caratteristiche di Frattura del Calcestruzzo. Master 
Thesis, Politecnico di Milano. 

Barcillesi, A. & Baroni, S. 2003. Determinazione Sperimentale 
delle Caratteristiche di Frattura del Calcestruzzo. Master 
Thesis, Politecnico di Milano. 

Bažant, Z.P. 1984. Size Effect in Blunt Fracture: Concrete, 
Rock, Metal. ASCE, Journal of Engineering Mechanics 
110: 518-535. 

Bažant, Z.P. 2002. Concrete Fractures Models: Testing and 
Practice. Engineering Fracture Mechanics 69: 165-205. 

Bažant, Z.P. & Oh, B.H. 1983. Crack Band Theory for Fracture 
of Concrete. Materiaux et Constructions 16: 155-77. 

Bažant, Z.P. & Planas, J. 1998. Fracture and Size Effect in 
Concrete and Other Quasibrittle Materials. CRC Press, 
Boca Raton and London. 

Bažant, Z.P., Yu, Q. & Zi, G. 2002. Choice of standard fracture 
test for concrete and its statistical evaluation. Int. J. Fractu-
re  118: 303-337. 

Carlucci, A. 2003. Interazione tra Comportamento Fratturante 
del Calcestruzzo e Aderenza Acciaio-Calcestruzzo nelle 
Strutture in C.A.. Master Thesis, Politecnico di Milano. 

Cedolin, L., Dei Poli, S. & Iori, I. 1987. Tensile behavior of 
concrete. ASCE, Journal of Engineering Mechanics 113(3): 
431-449. 

Colombo, L. 2004. Analisi di Prove di Frattura sulla Base del 
Modello Coesivo. Master Thesis, Politecnico di Milano. 

Cusatis, G., Bažant, Z.P. & Cedolin, L. 2003a. Confinement–
Shear Lattice Model for Concrete Damage in Tension and 
Compression. I: Theory. ASCE, Journal of Engineering 
Mechanics 129(12): 1439-1448. 

Cusatis, G., Bažant, Z.P. & Cedolin, L. 2003b. Confinement–
Shear Lattice Model for Concrete Damage in Tension and 
Compression. II: Numerical implementation and Valida-
tion. ASCE, Journal of Engineering. Mechanics 129(12): 
1449-1458. 

Cusatis, G., Bažant, Z.P. & Cedolin, L. 2006. Confinement-
Shear Lattice CSL Model for Fracture Propagation in Con-
crete. Invited paper for the special issue of CMAME enti-
tled Computational Modeling of Concrete: 7154-7171. 

Cusatis, G. & Cedolin, L. 2006. Two-scale Analysis of Con-
crete Fracturing Behavior. Invited paper for the special is-
sue of Engineering Fracture Mechanics 74: 3-17. 

Efron, B. & Tibshirani, R.J. 1993. An Introduction to the Boot-
strap. New York: Chapman & Hall. 

Guinea, G.V., Planas, J. & Elices, M. 1982. Measurement of 
the Fracture Energy Using Three-Point Bend Tests: 1. In-
fluence of Experimental Procedures. Mater. Struct. 25: 212-
218. 

Hillerborg, A., Moodéer, M. & Petersson, P.E. 1976. Analysis 
of Crack Formation and Crack Growth in Concrete by 
Means of Fracture Mechanics and Finite Elements. Cement 
Concrete Res. 6: 773-782. 

Hu, X.Z. & Wittmann, F.H. 1992. Fracture Energy and Frac-
ture Process Zone. Materials and Structures 25: 319-326. 

Planas, J. & Elices, M. 1993. Asymptotic Analysis of a Cohe-
sive Crack: 2. Influence of the Softening Curve. Int. J. 
Fracture 64: 221-237. 

Planas, J., Guinea, G.V. & Elices, M. 1997. Generalized Size 
Effect Equation for Quasibrittle Materials. Fatigue Fract. 
Eng. Mater. Struct. 20(5): 671-687. 

Planas, J., Guinea, G.V. & Elices, M. 1999. Size Effect and In-
verse Analysis in Concrete Fracture. Int. J. Fracture 95: 
367-378. 

Tada, H., Paris, P.C. & Irwin, G.R. 1985. The Stress Analysis 
of Cracks Handbook. Paris Productions, Saint Louis, MO. 

Taini, G. 2002. Determinazione Sperimentale dell’Energia di 
Frattura del Calcestruzzo. Master Thesis, Politecnico di Mi-
lano. 


