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Doubtlessly, for assessing the integrity and the strength of concrete structures to environmental attacks it would
be ideal to model the transition between diffuse damage and a discontinuous description. We propose, in a
first approach, to extract an equivalent crack opening using a non local Mazars’ damage model. We consider a
discontinuous displacement field with a given jump [U ] from which we compute the equivalent non local strain
ε̃([U ]) governing the damage variable in Mazars’ model. Besides, from a classical FE computation, we obtain
a distribution of the state variable ε̃FE with the same shape due to the non local weight function. Finally the
displacement jump is computed by setting ε̃([U ]) = ε̃FE at the discontinuity. The proposed approach is applied
on a tension rod with an error measure between both solutions to evaluate how the non local solution approaches
asymptotically the representation of a discontinuity. Results show good agreement for large damage.

1 INTRODUCTION

The assessment of the diffuse damage and the crack
opening is a key parameter to estimate the integrity
and the strength of concrete structures to environmen-
tal attacks ruled by diffusion and/or Darcy’s transfers.
Transfer properties are even the main serviceability
criteria of structures such as confinement vessels of
nuclear power plants.

Continuum enhanced and integral damage models
are capable to represent diffuse damage, crack ini-
tiation and propagation (Pijaudier-Cabot and Bažant
1987). They regard damage process as an ultimate
consequence of a gradual loss of material integrity.
These models, however, do not predict the crack
opening.

Another approach to model failure consists in rep-
resenting the discontinuity within the material ex-
plicitly (e.g. cohesive crack model (Hillerborg et al.
1976)). Those models relate the crack opening to the
stress level and are based on the linear elastic (or plas-
tic) fracture mechanics. They are usually used when
the Fracture Process Zone size is negligible compared
to the structure size. Furthermore one needs to know
the crack location beforehand and set the discontinu-
ous model at this place.

Trying to overcome disadvantages of both ap-
proaches (continuum damage and discrete crack)

many authors have tried to bridge both theories. The
key parameter of such an approach is the thresh-
old upon which the discontinuity is activated and the
crack starts to open. Usually, it is considered that the
discontinuity appears when damage, stresses or en-
ergy reach a certain threshold fixed beforehand. How-
ever, this transition remains arbitrary (Comi et al.
(2007), Simone et al. (2003)) and the equivalence be-
tween state variables of both approaches is not prop-
erly defined.

Instead of trying to bridge these two classes
of models as done by Mazars and Pijaudier-Cabot
(1996), Planas et al. (1993) and many others, we use
the nonlocal damage model to compute the initia-
tion and propagation of the diffuse damage and ex-
tract the discrete key parameter, i.e. the crack open-
ing, using the concept of strong discontinuity intro-
duced by Simo et al. (1993) and widely used over the
last decade (e.g. Oliver et al. (2002), Larsson et al.
(1998)).

We first recall briefly the strong discontinuity ap-
proach, then the non local damage model and finally
we apply our procedure to a tension bar where the
crack location is fixed at the center.
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2 NON LOCAL STRONG DISCONTINUITY
Let imagine the failure of an unidimensional elas-
tic brittle bar in elongation, one thinks that at a late
stage of damaging the bar will be splitted into two
parts with a crack somewhere depending on material
heterogeneities. We assumed that at failure the mate-
rial is fully unloaded (no stress) according to damage
models (see Equation 5) it also means unstrained ex-
cept at the crack. The displacement field will be con-
stant piecewise with a step at the crack position and
its continuous part vanishes. This concept can be seen
as an asymptotic development of the strong disconti-
nuity approach since our displacement field is purely
discontinuous whereas in the latter approach it is the
sum of a continuous and a discontinouous field.

We choose this pure kinematic mode of loading
(elongation rather than traction) since damage model
are driven by positive strain (see Equations 7 and 8).
Moreover computations need to be driven by strain
to model the post-peak regime in finite element code.
Let’s take a bar of length L oriented by �x clamped
at x = 0 and with a constant velocity v at the other
end (x = L). Let’s assume that the crack will occur
at a specific abscissa x = x0 known before hand (see
Figure 1.(a)).

If we assume that the bar is elastic perfectly brit-
tle, after failure the displacement profile (see Fig-
ure 1.(b)) will be:

usd(x,x0) = [U ]HΓ(x− x0) (1)

where underscore sd stands for strong discontinuity,
HΓ is the heaviside function and [U ] is the displace-
ment jump across the crack. Once the crack location is
known, the displacement jump is the unique unknown
of our problem. From Equation 1, we derive the strain
field (see Figure 1.(c)) with the classical symetric gra-
dient operator ∇s:

εsd(x,x0) = ∇susd = [U ] δ(x− x0) (2)

where δ(x) is the Dirac function. To this strain field
is associated a non local strain (see Figure 1.(d)) ac-
cording to the same procedure (see Equation 9) used
in the non local damage model.

Ȳsd([U ], x, x0) =

∫
Ω

φ(x− s)εsd(s, x0)ds∫
Ω

φ(x− s)ds
(3)

where φ(x) is the weight function. Using Equations 2
and 3, and the properties of the Dirac function we get:

Ȳsd([U ], x, x0) =
[U ]φ(x− x0)∫
Ω

φ(x− s)ds
(4)

which is a non local measure of the local displacement
jump.
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Figure 1: Conceptual model of an unidimensional bar
in tension. (a) Geometry of the bar with boundary
conditions, (b) Displacement profile, (c) Strain profile
and (d) Regularized strain profile.

3 NON LOCAL DAMAGE APPROACH
3.1 Damage model
The Mazars’ damage model (Mazars 1984) is used
in the finite element computations for simulating the
progressive failure of the bar. In this model the stress
is expressed as follows:

σ = (1−D)ε (5)

where D is the damage scalar variable generally writ-
ten as:

D = αtDt + αcDc (6)
where αt and αc depend on the strain tensor. In the
case of an uniaxial loading in elongation (αt = 1 and
αc = 0) Equation 6 is reduced to:

D = 1− YD0(1−At)

Y
− At

e[Bt(Y −YDO)]
(7)

where At, Bt and YD0 are the parameters of the model
and Y is defined by:

Y = max(Y, εeq) (8)

with initially Y = YD0 and the equivalent strain de-
fined as:

εeq =

√√√√ 3∑
i=1

〈εi〉2+ (9)



where 〈εi〉+ denotes the positive part of the princi-
pal strains. Because of softening it is well established
that this model is submitted to mesh dependency due
to damage localization. A regularization technique
needs to be employed to keep the objectivity of the
numerical problem.

3.2 Integral damage model
In order to overcome the loss of ellipticity of the
solution, the integral version of the Mazars’ dam-
age model (Pijaudier-Cabot and Bažant 1987) can be
used. In this approach the equivalent strain ε̄eq is a
function of the strain surrounding the computational
point.

ε̄eq(x) =

∫
Ω

φ(x− s)εeq(s)ds∫
Ω

φ(x− s)ds
(10)

This is mechanically justified by the interactions
(stress redistribution when micro-cracks occur) due to
heterogeneities of the material.

Since Y is the state variable associated to the in-
ternal variable D it cannot decrease in time (Equa-
tion 8), however the strain and consequently the reg-
ularized strain decrease in the neighborhood of the
crack (close but not at the crack) due to elastic unload-
ing. Therefore Y and Ȳsd cannot be directly compared
as the second one decreases when elastic unloading
occurs. Therefore, we construct a new variable named
Z̄eq defined by:

Z̄eq =

{
ε̄eq if ε̄eq ≤ YD0

Ȳ otherwise (11)

3.3 Computation of the crack opening
The idea is to compare both regularized strain fields
Z̄eq and Ȳsd as the first one represents the state vari-
able of the damage model and the latter one is easily
accessible by the strong discontinuity description of
the failure. The only unknown [U ] is computed by set-
ting that both regularized strain are equal at the place
of the crack supposed to be known beforehand:

[U ] =

Z̄eq(x0)
∫
Ω

φ(x0 − s)ds

φ(0)
(12)

Both entire field are then determined and can be com-
pared by defining an absolute error field ∆ such as:

∆(x,x0, [U ]) = Ȳsd(x,x0, [U ])− Z̄eq(x) (13)

and normalized it by the numerical field, one gets a
relative error field:

∆r(x0, [U ]) =

∫
Ωd

‖∆(s, x0, [U ])‖ds

∫
Ωd

Z̄eq(s)ds
(14)

As explained further in the numerical application, the
integration domain is reduced to elements where dam-
age has occured (Ωd).

Our analysis does not imply any modification of
a finite element code as we extract the regularized
strain field and compare it to an analytical one in a
post-treatment phase. In order to use our approach for
a wider range of application, the crack location will
have to be found from the damage and/or strain fields
out of the finite element computations.

4 NUMERICAL COMPARISON
We first present the numerical results with the Gaus-
sian weight function and, at the end, we look at the
influence of the shape of the weigth function.

4.1 Global response
We numerically solve the problem defined in Fig-
ure 1.(a) for a unit length bar and we force the crack
position by setting a weak element at the center with a
smaller Young modulus Ewe. In a first step, the most
often used Gaussian weight function is chosen:

φg(x− s) = exp

⎛
⎝
(

2‖x− s‖
lc

)2
⎞
⎠ (15)

where lc is the internal length of the model. The ma-
terial parameters are presented at Table 1.

E = 37,7GPa
Ewe = 37,6GPa

ν = 0,2

YD0 = 10−4

At = 1
Bt = 14000
lc = 0.32m

Table 1: Material parameters for finite element com-
putations.

Bt and lc are chosen such that the process zone
does not reach the bar ends and is large enough to
avoid snap-back since our computations are driven by
the end displacement. Figure 2 shows the material be-
haviour with such a set of parameters.
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Figure 2: Material response for the chosen set of pa-
rameters.



An odd number of finite elements must be taken to
always set the weak element (crack position) at the
same place independently of the mesh density. We
found out that for this given problem 61 elements is
enough to reach the finite element convergence and
thus the mesh independency domain on the numerical
response. The global response is shown in Figure 3.
In order to highlight the evolution, 6 loading steps are
indicated by letters from A to F. We will refer to them
throughout the analysis.
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Figure 3: Global response of the bar in traction.

4.2 Damage and strain profiles
Figure 4 shows the evolution of damage profile during
loading process. As soon as damage starts to increase
the width of the damaged zone is roughly twice the
internal length and remains constant throughout the
fracture process. Subsequently the damage reaches at
the center of the bar a value very close to 1, smaller
though, according to Equation 7.
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Figure 4: Damage profile for particular loading steps.

Figure 5 shows profiles along the bar for the partic-
ular loading steps from A to F of the non local equiv-
alent strain Zeq issued from finite element computa-
tions and the regularized strain Ȳsd of our conceptual
approach.

Both profiles coincide at the center of the bar by
defintion of [U ] and have the shape of the weight func-
tion. One can have chosen another defintion of [U ] by
minimizing the difference between both profiles. Al-
though our error measurement is not optimized as a
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Figure 5: Numerical and analytical regularized strain
profiles for particular loading steps.

smaller error could be obtained, we kept our defintion
of [U ] as it sounds more physical. The numerical pro-
file is the widest since the engineer strains for non lo-
cal finite element approach do not localize in a single
element but in a small band included in the process
zone (see Figure 14). This is one aspect of the relative
incapacity of non local damage models to represent
exactly the formation of a macro-crack as non local
interactions are still modelled even for large values of
damage. Besides, if the engineer strains do localize in
a single finite element the numerical solution would
be mesh dependent.

4.3 Error measurement
From Figure 5, we decided to reduce the integration
domain of our error to the damaged zone Ωd in or-
der to get a measurement independent of the structure
size. Indeed, at early stages (A to E), the difference
between Zeq and Ȳsd profiles is mainly outside the
fracture process zone since our asymptotic strong dis-
continuity concept is defined for fully unloaded ma-
terial. Therefore, if integrated over the structural do-
main, the error would be directly related to the rela-
tive size of the FPZ and the structure size and would
be much larger for a longer bar than a smaller one.
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Figure 6: Evolution of the error vs loading.

As expected using the asymptotic concept of the
strong discontinuity approach the error (see Figure 6)



is quite large just after the peak load since the macro-
crack is not yet clearly formed, in other words the
material is not yet fully unloaded and unstrained out-
side the macro-crack. Afterwards the error decreases
rapidly to reach a limit value of 4% when the macro-
crack is widely opened. This value represents the level
of ability of the integral non local damage model us-
ing the Gaussian weight function to simulate a failure
in terms of kinematic variables.

Within the process zone the error is the largest
where the slope of the weight function is the steepest
(see Figure 7). As the error is due to a wider profile
of the non local strain, the error, i.e. the vertical dis-
tance between profiles, is the largest where the non
local strain profile is the steepest.
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Figure 7: Error profiles for particular loading steps.

Once the crack is fully opened the increase of its
opening is equal to the displacement applied at the
active end of the bar as no further strain are stored in
the material. Therefore the plot of the displacement
jump versus the imposed displacement tends to the
bisecting line (see Figure 8).

0.0

8.0E-05

1.6E-04

2.4E-04

3.2E-04

0.0 8.0E-05 1.6E-04 2.4E-04 3.2E-04
imposed displacement  (m)

d
is

p
la

ce
m

en
t j

um
p 

[u
] (

m
)

A
B
C

F

D

E

Figure 8: Evolution of the displacement jump vs load-
ing.

4.4 Influence of the weight function
One of the numerical parameters of an integral dam-
age model is the shape of the weight function. What-
ever the shape, the function must have an integral

over the domain of interest equal to 1 in order to re-
trieve the local strain if it is an homogeneous field.
We choose, in addition of the Gaussian function al-
ready used, two other weight functions, i.e. the bell
function:

φb(x−s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1−

(‖x−s‖
0.9lc

)2
)2

if ‖x− s‖ < 0.9lc

0 otherwise
(16)

and an exponential function:

φe(x− s) = exp

(
−
(

2‖x− s‖
0.6lc

))
(17)
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Figure 9: Damage profiles given by the three different
weight functions.

The bell and the Gaussian functions are quite sim-
ilar with a zero continuous tangent at the center (see
Figure 10). The exponential function is directly in-
spired by the function (18) proposed by Peerlings
1999 in order to get the analytical equivalence be-
tween integral and gradient approaches of non local
damage models.

φp(x− s) =
1

4πl2c‖x− s‖ (18)

× exp

(
−
(‖x− s‖

lc

))

This original Peerlings’ function has an infinite
weight at the center (x = s) which is a major draw-
back for a numerical use.

Constants (i.e. 0.6 and 0.9) multiplying the inter-
nal length lc for the bell and the exponential weight
functions are found such as to obtain the same width
for the damage band, with a different profile though
(see Figure 9). We choose this common features as
the damage band width is directly related to the ma-
terial properties and is the one usually measured ex-
perimentally by acoustic emission technique for in-
stance (Granger et al. 2007).
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Figure 10: Profile of the three weight functions com-
pared.
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Figure 11: Global force displacement response for the
three weight functions.

At the end, the three normalized weight functions
are plotted at Figure 10 for comparison. As expected
the steepest function (exponential) is also the narrow-
est with the largest weight at the center but all of them
are still quite similars and yield roughly the same
damage profile (see Figure 9).

Figure 12 and 13 show the comparison of the an-
alytical profile with the numerical profile of the non
local strain for the bell function and the exponential
function, respectively. From those plots the exponen-
tial weight function seems more adapted to represent
a strong discontinuity.
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Figure 12: Profiles of both analytical and numerical
regularized strains for the bell weight function.
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Figure 13: Profiles of both analytical and numerical
regularized strains for the exponential weight func-
tion.

Indeed engineer strain profiles for the three weight
functions clearly show in Figure 14 that the one given
by the exponential is much narrower than others due
to the specific shape of the weight function.
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Figure 14: Comparison of engineer strain profiles for
the three weight functions.

At the end, as expected from previous profiles the
error given by the bell function is similar to the Gaus-
sian function about 4% whereas the exponential func-
tion gives a smaller error of about 2%.
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5 CONCLUSIONS
We have derived an analytical model based on the
strong discontinuity approach for the failure of a



bar loaded in traction and compare it from a kine-
matic viewpoint to finite element computational re-
sults given by a continuous non local damage model.
Once the macro-crack is formed, our approach is ca-
pable to extract a crack opening displacement from
a finite element computation using non local dam-
age model with a good accuracy. This computation
is done as a post-treatment and is, therefore, costless
and easy to add in an existing finite element code.

Unfortunately, this method still requires some
user’s expertise since the error evolution vs. number
of element is not monotonously decreasing. The com-
putation of the displacement jump can be nearly null
if the mesh is not fine enough to properly describe the
strain profile. At the limit, one can use a mesh fine
enough to reach mesh independency of the global re-
sponse and still get the engineer strain localized in a
single finite element and consequently get a perfect
matching with the strong discontinuity approach. The
error asymptotically increases with the number of el-
ements to reach the “model error” of few percents.
Therefore, this procedure requires a very fine mesh in
the process zone to get the asymptotic error between
non local models and the strong discontinuity descrip-
tion of the failure.

This error slightly depends on the shape of the
weight function. The steeper at the peak is the weight
function the smaller is the error. At the end, our ap-
proach is capable to compute the crack opening from
a non local damage finite element calculation with an
error around 2% for the exponential weight function.

As the numerical engineer strain profile across the
crack depends on the shape of the weight function,
some input should be given by new field measurement
techniques (e.g. correlation) in order to select which
one of the weight functions gives the closer strain re-
sponse.

On one hand this approach needs to be extrapolated
to real reinforced structures with multi crack pattern.
The key issue will be to locate in space several cracks
from the damage and/or the strain field(s) given by
the finite element computation. The crack will have
to be discretised somehow in order to apply our 1D
approach along the crack to get the variation of the
opening along the crack. We expect our approach to
be valid as long as cracks do not bifurcate even for
multi crack pattern as long as we are able to locate
and treat individually each crack.

On the other hand, it needs to be validated using
experimental tests. It will be performed at the speci-
men scale with no reinforcement in order to get a sin-
gle crack whose opening can be measured precisely.
We will use specimen made of mortar for having a
fracture process zone small enough compared to the
specimen size in order to highlight structural effect.
We choose to perform those tests on concrete discs

loaded in compression in the diameter plane (splitting
test). Measurement of the displacement field by im-
age technique carried out during the tests will permit
to extract the crack opening which will be, at the end,
compared to the one obtained by our approach from a
continuous non local damage modelling.
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