
1 INTRODUCTION 
 
Transport properties of concrete, like permeability 
or diffusivity, are particularly important in case of 
structures with a tightness role, for instance con-
tainment vessels in French nuclear power plants. 
Evaluation of their gas tightness is critical during 
their service life, where concrete remains at most 
microcracked, but also during minor accidents, when 
macrocracks may appear locally. Results of experi-
mental tests (Choinska et al., 2007), performed on 
hollow concrete cylinders subjected to compressive 
loading, emphasize gas permeability increase with 
axial strain, ranging from 0 to 3 times the strain at 
the peak load. Furthermore, three regimes of perme-
ability evolution, related to the mechanical response 
of concrete yielding different cracking regimes (mi-
crocracking or macrocracking), are observed.  

The first regime, standing up to strain localization 
limit (just before the peak in simple compression 
test) and exhibiting relatively slight permeability in-
crease, is probably due to the presence of micro-
cracks homogenously spread out in material. Rela-
tionships between permeability and diffuse 
microcracking, described by damage variable, have 
already been derived theoretically (Dormieux & 
Kondo, 2004 and Chatzigeorgiou et al., 2005) and 
investigated experimentally (Picandet et al., 2001). 

The phenomenological models are most often expo-
nential or power type with validity up to moderate 
diffuse damage. However, due to strain localization 
(transition between diffuse damage and crack open-
ing), a second regime with rapid permeability in-
crease is observed experimentally. Finally, the third 
regime, characterized by a slower rate of permeabil-
ity evolution versus strain in comparison with the 
previous one, appears. Here, due to the formation of 
macrocracks, permeability becomes governed at the 
macrostructural level by Poiseuille's law and de-
pends essentially on macrocrack(s) opening.  

Finally, one may consider that damage variable is 
an appropriate parameter to model permeability evo-
lution of microcracked material and crack opening is 
a relevant parameter to model permeability change 
of a macrocracked element. Existence of one and 
only one parameter governing permeability change 
from diffuse damage to discontinuous macrocrack 
opening is thus questionable. Therefore, in order to 
describe permeability evolution throughout the con-
crete fracture process by a unique relation, we pro-
pose to define a matching law between existing rela-
tions of permeability evolution with diffuse damage 
and with crack opening.  

Analytical variables substitution, used in order to 
associate crack opening with state variable (regular-
ized strain) and in turn with damage, is shown in 
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ABSTRACT: Experimental tests prove strong interaction between mechanical state and transport properties 
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variable. Both relations of the evolution of permeability are thus reported to damage and can be weighted by 
the damage variable to form a single relation between permeability and damage presumed to be valid for dif-
fuse damage state and discontinuous macrocracking. In order to emphasize influence of the matching law on 
structural response, we run finite element simulations of a Brazilian splitting test. In conclusion, numerical 
tendencies are similar to observed ones on experimental results. 



Section 2. In Section 3, concept and basic features of 
the proposed matching permeability law are pre-
sented. Details of numerical finite element simula-
tions, run on a Brazilian splitting test using a nonlo-
cal damage model and the proposed matching 
permeability law, are shown in Section 4. Finally, 
the concluding remarks are made in Section 5. 

2 ANALYTICAL VARIABLES SUBSTITUTION  

2.1 Problem statement 
Fracture and damage mechanics are two correlated 
theories (Mazars & Pijaudier-Cabot 1996, Dufour at 
al. 2007). The bridge between fracture and damage 
mechanics can be considered to be the situation 
where damage is equal to one at a material point or 
in a small region defining the size of an initial flaw 
in the theories of fracture. Therefore, we may sup-
pose equivalence at failure between continuous dam-
aged domain and discrete macrocracked domain. 
This assumption is followed in order to substitute 
crack opening by damage field.  

At first, nonlocal damage model is reviewed. 
Then, equivalence at failure between damage field 
and crack opening is analysed.  

2.2 Nonlocal damage model 
In our contribution, the scalar damage model devel-
oped by Mazars (1984), enriched by a nonlocal ap-
proach to strain softening has been chosen. In Ma-
zars’ model damage is assumed to be isotropic and it 
is held that it produces a degradation of the elastic 
stiffness of the material through a variation of the 
Young’s modulus: 

εσ CD)1( −=  (1) 

where σ and ε are the Cauchy stress tensor and the 
strain tensor respectively. C is the fourth order ten-
sor of elastic moduli. The damage variable D ranges 
from 0 for virgin material to 1 for completely dam-
aged material with a zero stiffness and depends on 
state variable Y: 

)(YFD =  (2) 

The state variable Y reaches a maximal value during 
loading history between the damage threshold YD0 
and the equivalent strain εeq: 

),(max 0/ Deqt YY ε=  (3) 

The equivalent strain εeq is defined as follows (Ma-
zars 1984): 

( )
23

1
∑
=

+
=

i
ieq εε  (4) 

Damage follows a damage evolution law which dis-
tinguishes tensile damage Dt and compressive dam-
age Dc (Mazars 1984): 

cctt DDD αα +=  (5) 

where αt and αc are the weights computed from the 
strain tensor. However, in the case of mode I loading 
(see Figure 1 (a)), αt=1 and αc=0. Therefore, the 
damage model used hereafter is based on the follow-
ing evolution law of damage: 
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where At and Bt are the model parameters.  
In this formulation damage depends only on the 

strain state at a point under consideration. Hence, 
this local formulation exhibits spurious strain local-
ization (like any strain softening local formulation). 
Consequently, numerical simulations yield a patho-
logical mesh dependency and physically unrealistic 
results are obtained (Bazant & Planas 1998). Never-
theless, different techniques exist to spread localized 
strain.  

One possible remedy consists in reformulating the 
constitutive model in a nonlocal approach, with 
damage parameter at a material point depending on 
the strain not only at this point, but also in its 
neighbourhood determined by the interaction radius 
dependent on the material heterogeneity parameter. 
This nonlocal model, called integral, was developed 
by Pijaudier-Cabot & Bazant (1987). In this model, 
a nonlocal equivalent strain is the weighted average 
of the local strains over the representative volume Ω 
surrounding each point x in the material: 
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)( sx −φ is the classic weight function defined as: 
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where lc, the internal length of the material, is re-
lated to the material heterogeneity parameter quanti-
fying the non local interactions (Bazant & Oh 1983). 

Another possibility is the use of higher order gra-
dient models in which strain derivatives are incorpo-
rated in the description of damage evolution. In gra-
dient models, established by expansion of the 
integral relation into Taylor series which yields gra-
dient terms (Bazant et al. 1984), a nonlocal equiva-
lent strain may be determined as follows (de Borst et 
al. 1995): 



eqeqeq c εεε 2∇−=  (9) 

where the parameter c is of the dimension of a 
square length, so that √c can be regarded as the char-
acteristic length of the model, related to the material 
heterogeneity parameter.  

Finally, in nonlocal models damage becomes gov-
erned by a nonlocal state variable Y  which follows 
Equation (3) in its nonlocal form: 

),(max 0/ Deqt YY ε=  (10) 

)(YFD =  (11) 

Integral and gradient models are strictly equiva-
lent in the case of the infinite continuum and for a 
specific weight function (Peerlings 1999). Gradient 
model can thus be regarded as a particular case of 
integral model. Furthermore, numerical tests (Jason 
2004) permit to establish a relation between the 
regularization parameters of an integral and a gradi-
ent Mazars’ damage model:  
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The proposed analytical approach to substitute 
variables is thus based on an integral model. The 
gradient model is used in further finite element 
simulations and permits to achieve mesh objective 
damage distributions. 

2.3 Equivalence at failure between crack opening 
and damage field 

In order to substitute crack opening by damage field, 
we suppose equivalence between two domains: a c-
racked one with a discontinuous crack opening [u] 
(see Figure 1 (a)) and a damaged one with a dam-
aged zone of width λlc (see Figure 1 (b)).  

 

   
(a)            (b) 

 
Figure 1. (a) Cracked domain (discrete case) (b) Damaged do-
main (continuous case). 

 
Comparison of both domains is carried out at fail-

ure under the hypothesis of a uniform damage distri-
bution in the damaged zone where D = 1.  

Subsequently, we should calculate the crack open-
ing in the continuous case. For this purpose, we sug-
gest first to associate the crack opening with the 
state variable governing damage (see Equation (10)). 

Use of this variable, irreversible, permits to keep ir-
reversible the relations between damage or crack 
opening and permeability. We propose thus to calcu-
late the crack opening as: 
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As the damage distribution in the damaged zone is 
uniform, one obtains the crack opening as: 

cD lYYu λ)(][ 0−=  (14) 

To substitute this crack opening with a damage 
field, we relate the state variable with the damage 
through an inverse damage evolution law (see Equa-
tion (11)): 

)(1 DFY −=  (15) 

Finally, by substitution of Equation (15) with 
Equation (14), the crack opening may be represented 
as a function of the damage: 

cD lYDFu λ))((][ 0
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The hypotheses, on which computation of the 
crack opening is founded, are disputable. This ap-
proach may be improved by considering variation of 
the state variable in the damage band or by applica-
tion of the method presented by Dufour et al. (2007). 
Nevertheless, this simplified approach is retained in 
further analysis.  

3 MATCHING PERMEABILITY LAW  

3.1 Diffused damage – permeability interaction 
In order to represent interaction between diffused 
damage and permeability at material level, the phe-
nomenological relation established by Picandet et al. 
(2001) for  damage lower than 0.15 is retained in the 
further study: 
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where kD  and k0 are respectively the current and the 
initial material permeability. α and β are the parame-
ters fitted by the author to 11.3 et 1.64 on experi-
mental results of axial compressive damage on gas 
permeability of ordinary and high-performance con-
crete. 

3.2 Crack opening – permeability interaction 
At rupture, Poiseuille’s law, applied to fluid flow be-
tween two plane and parallel plates distant of [u], 
may be used to describe permeability evolution with 
macrocrack opening. This “crack permeability”, 
called kf, is therefore given by: 



12
][ 2uk f =  (18) 

Crack opening represents amplitude of the dis-
continuity which appears within the material when it 
is completely degraded locally, therefore when its 
damage is close to 1. Consequently, for high damage 
value, we should find the permeability given by 
Poiseuille’s law. Using Equation (16), this perme-
ability is as follows: 
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3.3 Matching law definition 
As two permeability evolution laws, kD  (Equation 
(17)) and  kf  (Equation (19)), have already been for-
mulated using the damage variable only, we propose 
now to associate them by means of a simple match-
ing law which tends for a moderate damage (diffuse 
microcracking) to Picandet’s permeability, and for a 
strong damage (macrocrack) to Poiseuille’s perme-
ability: 

fD DkkDk +−= )1(  (20) 

An alternative for this matching law, based on 
logarithm of the permeability, may be used:  

)log()log()1()log( fD kDkDk +−=  (21) 

Besides, there is an obstacle concerning applica-
tion of Picandet’s exponential relation (Equation 
(17)) in the proposed matching laws (Equations (20) 
and (21)). Indeed, Picandet’s relation, valid for dif-
fuse and moderate damage ranging between 0 and 
0.15, quickly tends towards infinite values when 
damage increases. To avoid it, we propose to intro-
duce another function: simple, of power type, with-
out any threshold, equivalent to Picandet’s exponen-
tial relation for damage ranging between 0 and 0.15, 
and which, at the same time, does not quickly tend 
towards infinity. Thus, one may propose the follow-
ing relation:   
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In the next paragraph, contribution of two alter-
natives matching laws, given by Equations (20) and 
(21), will be presented and commented, as well as 
influence of Picandet’s exponential relation (Equa-
tion (17)) and the modified one (Equation (22)).  

Finally, we propose to analyse four matching 
laws: 

 
- Matching law 1 :  

fD DkkDk +−= )1(  (23) 

 
- Matching law 2 :  

)log()log()1()log( fD kDkDk +−=  (24) 

 
- Matching law 3 :  
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- Matching law 4 :  
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3.4 Matching law properties 
To represent the proposed matching laws, let us con-
sider a strongly damaged material with a behavior 
following Mazars’ damage model. The model pa-
rameters are given in Table 1. 
 ______________________________________________ 
E     ν    YD0    At     Bt   ______   
GPa     ______________________________________________ 
37.7      0.2    1.10-4   1.0      15600 ______________________________________________ 
 
Table 1.  Parameters of Mazars’ damage model. 
 
The internal length lc is arbitrary chosen equal to 
0.02m, while the parameter λ, which influences the 
width of a damaged band, is chosen equal to 2. Ini-
tial permeability 0k  considered in simulations is 
taken equal to 21710 m− . 

Considering the parameters of Mazars’ damage 
model (see Table 1), the inverse damage evolution 
law, based on Equation (6), is used in order to repre-
sent the permeability kf (see Equation (19)): 
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Permeability evolutions, according to the pro-
posed matching laws (Equations (23)-(26)), with 
damage and with state variable are shown in Figure 
2 and Figure 3 respectively. 

We observe that independently on the type of the 
matching law used (Equations (23) and (24)) appli-
cation of Picandet’s exponential relation (Equation 
(17)) leads systematically to an overestimation of 
the permeability (for damages higher than 0.15) in 
comparison with the permeability given by 
Poiseuille’s law (Equation (19)).  

However, concerning the modified Picandet’s re-
lation (Equation (22)), two types of the matching 
law (Equations (25) and (26)) give similar results in 
terms of orders of magnitude of permeability evolu-
tion. Nevertheless, a problem arises in the case of 
the matching law given by Equation (25), for which 



permeability evolution is not adequately reproduced 
for small damage lower than 0.3.  

Notwithstanding, the matching law given by 
Equation (26), represents correctly the permeability 
for damage ranging between 0 and 0.15, as well as 
for strong damage where it tends towards the perme-
ability given by Poiseuille’s law. Therefore, we pro-
pose to retain this matching law for which perme-
ability evolution is shown in Figures 4 and 5.  
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Figure 2. Logarithm of permeability evolution with damage. 
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Figure 3. Logarithm of permeability evolution with state vari-
able. 

 
 

0

2

4

6

8

0 0,2 0,4 0,6 0,8 1
D

lo
g 

(k
 / 

ko
)

Picandet's relation
modified Picandet's relation
Poiseuille's law
Matching law

 
 
Figure 4. Logarithm of permeability evolution with damage for 
the retained matching permeability law. 
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Figure 5. Logarithm of permeability evolution with state vari-
able for the retained matching permeability law. 

4  NUMERICAL SIMULATIONS 

In order to emphasize influence of the retained local 
matching permeability law on structural response, 
we propose to run finite element simulations of a 
Brazilian splitting test. 

4.1 Mechanical problem 
The Brazilian splitting test is used as a standard 
measure of tensile strength of concrete, rocks and 
other geomaterials. The cylindrical specimen is 
loaded along a diametral plane by means of steel 
bearing plates, as shown in Figure 6 (a). As this 
study is not related to any experimental data, the 
steel bearing plates are arbitrary modelled with rigid 
plates, with high Young’s modulus (E = 300 GPa) 
and Poisson’s ratio ν of concrete in order to avoid a 
confinement effect of concrete. The set of parame-
ters of Mazars’ damage model (see Table 1) repre-
sents ordinary concrete behaviour.  

 

  
 
(a)            (b) 

 
Figure 6: Brazilian splitting test (a) problem statement (b) FE 
mesh. 

 
Numerical simulations are performed in the FE 

code Code_Aster with 6-node triangular elements. 
Due to double symmetry, a computation domain 
consists of one quarter of a specimen. A plane strain 
nonlocal gradient Mazars damage modelling (see 



Equation (9)) is carried out in order to evaluate 
global mechanical response of structure as well as 
initiation, distribution and evolution of the damaged 
zone. As a parameter of the model, we use the char-
acteristic material length √c, established according 
to Equation (12).  

Solution’s objectivity and mesh independence are 
provided on different mesh densities. The coarsest 
mesh, for which a large change in mesh density 
yields only a small change in a solution, is chosen 
for the further simulations (see Figure 6 (b)).  
A nonlinear problem is solved incrementally by 
crack opening displacement (COD) control, i.e. the 
horizontal displacement of point P. F-COD plot is 
shown in Figure 7.  

 

0,0E+00

2,0E+05

4,0E+05

6,0E+05

0,0E+00 2,0E-06 4,0E-06 6,0E-06

COD (m)

F 
(N

)

 
 
Figure 7: F-COD plot. 
 

Damage distributions at damage initiation and at 
last loading step are depicted in Figures 8 (a) and 
(b). Maximal damage is initially located in some 
place along the vertical symmetry axis and then it 
translates downwards to the centre as the loading in-
creases. Progression of damage in transversal sec-
tion of the specimen (maximal values) is shown in 
Figure 9. One can observe that damage develops in a 
band of a limited width which is governed by model 
characteristic length. In addition, the height of the 
damage band at failure is the diameter.   

 

     
 
(a)           (b) 

 
Figure 8: Damage distributions at (a) damage initiation and (b) 
at last loading step. 
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Figure 9: Damage progression in transversal section of the 
specimen (maximal values). 

4.2  Structural permeability evolution 
At each damage state, a local permeability is com-
puted according to the matching law (Equation (26)) 
applied at each Gauss points of a discretized struc-
ture. Then, a structural permeability is determined 
by weighted-averaging of the local permeabilities.  

Results plotted in Figure 10 show evolution of 
logarithm of the structural permeability (k str) with 
COD to peak COD ratio. One can observe that these 
numerical results are in qualitative agreement with 
experimental results of the tests performed recently 
in our laboratory on hollow concrete cylinders sub-
jected to simple compressive test and radial gas flow 
under loading (Choinska et al. 2007) (see Figure 
11). Finally, one may consider that, even if the type 
of test is not the same one, permeability varies ac-
cording to the same type of the matching law.  

5 CONCLUSIONS 

In this contribution, a matching permeability law, 
derived from an analytical approach based on 
equivalence at failure between discontinuous crack 
opening and damage, has been proposed. By analyti-
cal variables substitution we have associated first 
crack opening with state variable (regularized strain) 
governing damage in nonlocal integral damage 
model and afterwards we have related state variable 
with damage through the evolution law using the 
hypothesis of a uniform damage distribution in the 
damaged zone. Consequently, we have conceived a 
matching permeability law from the relations of 
permeability evolution with diffuse damage and with 
crack opening both reported and weighted by the 
damage only. Using parameters representing me-
chanical and hydraulic behaviour of an ordinary 
concrete, several cases of a matching law have been 
tested. Finally, we have retained a matching law 
based on logarithms of permeability given by modi-
fied Picandet’s relation and Poiseuille’s law. In or-
der to emphasize influence of this matching law on 



structural response, we have numerically simulated a 
Brazilian splitting test. Numerical tendencies are 
similar to observed ones on experimental results of 
the tests performed on cylinders in simple compres-
sion test. This observation permits to suppose that, 
even if the type of test is not the same one, perme-
ability varies probably according to the same type of 
matching law.  
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Figure 10: Evolution of logarithm of structural relative perme-
ability with COD to peak COD ratio. 
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Figure 11: Evolution of logarithm of structural relative perme-
ability with displacement to peak displacement ratio (experi-
mental results, after (Choinska et al. 2007)). 

 
Experimental validation of the proposed ap-

proach, emerging towards a continuous model capa-
ble to reproduce permeability variations of a con-
crete structure, constitutes a major perspective of 
this work. Experimental tests will be realised soon 
on concrete discs loaded in a Brazilian splitting test 
for which one single crack forms and boundary con-
ditions are well identified, on contrary of a compres-
sion test. Measurement of the displacement field by 
image analysis and of the gas flow will be carried 
out during the tests and will be compared with nu-
merical results in order to validate the proposed ap-
proach based on continuous non local damage mod-
elling. 
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