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ABSTRACT: Concrete collapse is seldom governed by crack propagation in pure Mogeriig, due to
loading and geometrical complexities. Usually, a superposition of the three modes of propagation occurs.
the laboratory, instead, the tests are normally performed by loading structures in Mode |. Moreover, such te:
are conducted on smaller samples with respect to the real dimension. These two factors should be analyze
order to get the actual strength and toughness for real structural members.

The Authors proposed the so-called Multifractal Scaling Law, largely validated in presence of failure in pur
Mode | and especially in absence of large pre-notches. In the present work, the MFSL is applied to failures
Mode 1l (sliding) and Mode Il (earing). The interpretation of experimental tests for shear and torsion permits
to affirm that the interaction between the microstructural characteristic length and the external structural si
governs the scale effects also in Mode Il and IlI .

1 INTRODUCTION

Fracture propagation in concrete and mortar has bee
generally analyzed when the crack advances orthogc
nally to the maximum principle stress, in pure Mode |
(opening modg Effectively, in concrete structureswe <.
have always experimentally observed fracture propa —
gation in Mode I, even in presence of bi- and tri-axial
state of stress, as in the collapse of large beams ar
plates, in the collapse for tear and for punching. Con
sequently, the strength and toughness parameters dk
inition for collapse in Mode Il and 11l is often consid-

ered useless.

It is opportune however to distinguish between _ o
crack initiationandlimit state This is essential nowa- Figure 1. Mechanisms of transmission for shear
days as semi-probabilistic approaches for design derces in ultimate limit state.
limit state split the two aspects and tend to assure ) o _
structural integrity with respect to catastrophic col- When the microstructural roughness is involved in
lapse. In fact, crack initiation of the single micro- Propagation resistance mechanisms, it is necessary to
crack is always governed by local tension stres§lefine correct mechanics parameters for Mode Il and
(Mode 1) generated by singularities due to micro-!l- This is what happens for shear and tearing ulti-
structural heterogeneities and to pre-existent defect§nate limit state, for seismic loads and for all struc-
while meso- and macro-phase of propagation imposBires cracked under loads in general. It is commonly
the interaction ofn-plane shear or slidingMode 1I) ~ considered thatin these conditions, crack propagation
andantiplane shear or tearingMode I11). in Mode | is localized and discontinuous, limited to
very small scales, while Mode Il and Il dominate in

Fracture propagation in Mode Il and Il has beencollapse phase, characterized by continuous fracture.
observed, for concrete, in all dynamic shear test, durs his bh : : ) , h
ing impact resistance and in bullet penetration testsT IS phenomenon 1s evident in twist test on notched

pecimen by (Bazant et al., 1988), where Elastic The-

In all these cases, a generalized fracture toughne§ . L L , .
Iy provides a stress and strain field, antisymmetric

?Jis>b6e¥i.n>d %tlermlned, and it has been obtained th\%lth respect to final fracture surface. As the fracture




surfaces are plane and normal to applied twist mo-

ment, they represent Mode Il fractures. The micro- Vud
structural interlocking appears very important in tear Ve = 1-9\/70'+ 2500 M,
collapse, the warping being not permitted.

The present Codes are generally calibrated to givgy which the three variablesx/(f; is a measure of con-

an adequate safety parameter with respect to crac&ete tensile strengti, and V,d/M,, where/, and
initiation for shear-twist. Unfortunately, crack initi- i o hy v

; : : M, are the factored shear and moment occurring at
ation load is generally not proportional to collapse

load. This can be, in fact, much less or only lightly section considered) affect shear strength. Some re-

less then ultimate load, by varying size of the c:onsid-SearCh data (Kani, 1967) has indicated that in eq.3

ered element and other factors (micro-structure, Ioa@hear strength decreases as the overall depth of mem-

. . berincreases.
rate, etc.). Consequently, a correction from classica
formulae is necessary, in order to maintain a homoges i
neous safety margin with respect to shear brittle col-2 aISEIEE:TZI;:\I%TIII LAW FOR STRENGTH IN

lapse by varying structural size. _ ] _
The present Italian Code (DM, 1996), in accor- Dimensional scale-effects emerge in many aspects of

dance with Eurocode 2 (EC2, 1995), considers botﬁhe so-called disordered materials .mechqnical behav-
the aggregate interlocking (Fig. 1.a), which increased2r- The primary cause of these dimensional effects
the resistance shear load for beams with a depth 'S represented by the heterogeneity of the material,

0.60m. and the so called Dowel action. which rep-WhiCh is the origin of local cracks in Mode | as well.
resents the load capacity of a longitudinal steel reinJ N€ €xistence of an internal length which interacts

forcement in the normal direction with respect to its With the external dimension of the considered spec-
axis (Fig. 1.b). This Code (DM, 1996) establishes toMeN IS the consequence. The collapse due to brittle

calculate the esistance shear load at ultimate limit ~ Propagation of a crack in Mode Il or lll clearly shows
stateV,,, as following: the peculiar features of critical phenomena, character-

ized by hierarchical evolution of micro-cracks, start-
ing from the initial casual distribution of defects to
Viau < 0,25 fetar (1 + 50p1)budd, (1) the coalescence of micro-cracks in the final crack sur-
in which f., is the tensile strength: = (1.6 — d),  face. The progressive transition from local Mode | to
with d (section depth) expressed in meters @nd  global Modes Il and 11l shows as well the typical cus-
0.60 m.;p, = Ay /(byd): this coefficient takes into pidal (catastrophic) type instabilities.
accountAg;, which is the longitudinal reinforcement  The self-similar and hierarchical evolution of the
area;b,, is the shear resisting section width;is a damage has been extensively verified by experimen-
dimensionless coefficient depending on load condital tests (Carpinteri et al., 1995). The multi-scale
tions. Eurocode 2 (EC2, 1995) similarly establishegpropagation in Modes 1l and Il reflects the hier-
to calculate the shearing strength,; as following: archical character of concrete microstructure, which
ranges from the microscopical scales of clinker to the
mesoscales of aggregates, embedded in the concrete
Vrar = [Trak (1,24 40p1) + |0, 15|0,)bwd,  (2)  matrix. Fractal Geometry allows to abandon the in-
teger dimensions of the euclidean sets and to syn-
in which 7z, = (0,25 f.x0,05)/7. is the unitary shear- thetically describe, by means of non-integer topolog-
ing strength,v. being a dimensionless coefficient; ical dimensions, the heterogeneous and self-similar
k= (1.6 —d); o, = Nsa/A., Nsq being the longi- domains inside the concrete. In this way it is possi-
tudinal force in the section, due to loads or to pre-ble to quantify the degree of disorder of the material
compression. These two formulas are very similar, bemicrostructure and to deduce the structural effects of
cause both take into account the contribution of thehe microscopic complexity. Due to the chaotic evo-
aggregates as well as of steel reinforcements. Whilkution of the damage in the material, the assumption
in the Italian Code though,, is proportional to the of a lacunar (rarefied fractal of dimension less than
coefficient(1 + 50p;), in the Eurocodé&’r,; is propor-  2) reacting section is however more adherent to re-
tional to the coefficient only i, = O. ality than the classical assumption of an euclidean
These approaches seem inadequate. They are empismooth and coMPact area (dimension = 2). It is con-
and do not take into account the micro-structural charsequently necessary to consider a topological dimen-
acteristic of concrete. sionA, less then 2 ([L]~%"), whered, represents the
According to ACI Building Code (ACI-318-89, dimensional decrement due to the chaotic damage to
1989), the basic expression for Shear Strengttof  all scales. In this manner it is possible to draw an ele-
members subject to shear and flexure without sheagant and synthetic description of the strain field when
reinforcement is the following: varying the observing scale, and, by means of a renor-

) bud,  (3)



malization procedure (Carpinteri, 1994), the stre'ss vails and scale effect is strongly present, and eu-

([F][L] ~~9")) is obtained; this parameter is anoma-clidean behavior, where the disorder effect disappears

lous but independent from the scale. This invarianiand a constant asymptotic value of shear resistance

guantity allows to easily deduce the dimensional de+, is reached. It needs to be noticed that the scaling

pendence of the nominal strength paramete(de- curve slope is ruled by the ratio betwekp and the

fined on the idedigamentas [F][L]~2), which is con-  referring structure dimensioy and that the Brown-

trolled by the fractal dimensional decremeht ian hypothesis gives the exponent 1/2, which has the
Applying such ideas to structural level, the nomi- same value as the curve slope (maximum scale effect)

nal shear strength decreases with considered elemeifair very small structures. In the bilogharitmic diagram

height increasing; this variation is controlled by the(fig 2), MFSL shows a concave behavior, where SEL

fractal dimensionA,. (and hence by the damage en-shows a convex behavior (Bazant, 1984).

tity) of the resisting section. On the other side, as

the structural dimension increases, considered ¢ Tyo log x

fields progressively homogenize. Taking into acct

the limits of microscopes scales, the fractal din

sion cannot be lower than 1.5; this confirms that f”zh Eive

ture propagation process is a dissipative (Browr — & &y,

&

phenomenon. Small structures will take more b
fit of the propagation process fractal character. _
the other side in larger structures fractality disapp Homogeneous regime

at a structural level (even if it still controls the pl Q
nomenon at a local level), and typical euclidean i logt
scriptions give acceptable results. Dimensional ¢ ’ $ -
effect is very strong on small beams, in which the
order influence is remarkable, while it smoothes duwii _ )
with external dimensions increasing. This transitionFigure 2. Multifractal Scale Law for ultimate shear
from disorder to ordergeometrical multifractalityis ~ Stress.
controlled by the interaction between the characteris-
tic microstructural length (which can be expressed by
an internal lengthi.;,) and external dimensions.

The multifractal approach fully agrees with the

X=1logd

logly, I

From an engineering point of view, eg. 4 allows to
determine the shear strength (or the torsional strength)

classic Cohesive Model (Hillerborg et al., 1976); this®n Very large structures, while the SEL forecasts null
model considers the ratio between the characteristifeSiStance on larger scales. Furthermore, the internal
dimension of the process zone (in which energeticendth parameter, which is function of concrete mi-
dissipations take place) and the beam dimension a%rostructural characteristics, allows to make a distinc-
a marker of the influence of material microstructuralton among various hconc_re_te mIXél_JI’eS and to |der(;-
disorder on material strength. On the other side, thid’y: C?feh yI case, t el_(rjnlnlmumd |Imen5|t()3n excsep:
approach is revolutionary with respect to Bazant Scald'9 WNICh ClassiC euclidean model can be used.

E L EL) (Bazant. 1984) si th le efdreat numbe(of tests, as _shown in the fo!lowing para-
feréﬁigi/e r?;vs(:n o?aéoziztgr;réng.gg ), since the scale e graphs, confirms the validity of MFSL in cases of

On the basis of these arguments, a simple equ(,j{:_ollapse due to propagation in Mode Il and Ill. The

tion which allows to model the scale effect on ten-diSPersion of experimental strength values decreases
sile strengthry (Mode 1), has been obtained, and it is W/th specimen dimension increasing, showing the es-
largely supported by available data (Carpinteri et al. S€Nntial influence of heterogeneity.

1995). Such relationship can be extended to Mode |

and I)II failure cases, si?nply introducing a nominaI!3 APPLICATION OF MFSL TO EXPERIMEN-
shear strength parametey instead of normal tensile TA_L DATA IN MO_DE ”_ _

stressry . App|y|ng the renorma”zing procedure and EXp_erImenta' tests in which concrete specimens are
considering the euclidean fractal transition, the anaSubject to a pure Mode Il state of stress are analysed
lytical expression of MultiFractal Scale Law (MFSL) in this paragraph. It is important to notice that from

can be written as: an experimental point of view, creating a load system
which generates a pure Mode Il state of stress is very
I 3 difficult, therefore the knowledge of such collapse is
TN = Too <1 + i) (4) still quite limited and related results are very few. The
d four point shear specime(ig.3), proposed for the

wherel., represents the internal length that sets thdirst time by losipescu (losipescu, 1967), is the mostly
limit between fractal behavior, in which disorder pre- used shearing test model and it has been further devel-



1.5

oped in many versions. Such double-notched geome | @)
ogT

try presents a state of stress which is associable to
mixed Mode, where Mode Il is clearly prevalent over 1.0
Mode I.
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Figure 3. Shearing test chart according to losipescU ",y 05 10 15 20 25 30 35 40

(losipescu, 1967). 1.5

log T (b)

1.0
A number of shearing tests were performed at Po-
litecnico di Torino (Bocca et al., 1990) , using the 0.5

classicfour point shear specimegeometry. Speci-

men width was kept constant and equal+d00 mm,

with a ratio span-height/d of 4, and with d=50, 0.0
100, 200 mm for the three different tested dimensions
Therefore the reached scale range was equal4o 5 )
The concrete had a water-cement ratio of 0.5, with

maximum aggregate dimensiap,,,=10 mm. Com- T [ logd
pressive strength, measured on 160 mm side cube:‘l'%.o 05 10 15 20 25 30 35 40

resulted equal to 33.7 MPa. A displacement-controkqyre 4. Application of Multifractal Scale Law to

machine (with maximum load of 100 kN) was usedgnearing tests (Bocca et al.. 1990): 4 (b
to apply the load. A constant increase of the slip be-.—q g g ( h ) @0-4; (b)

tween the two crack faces of 280~% m/s, measured
by a DD1 transducer, was taken as a control parame-

ter. Three sets of tests were made, varying the arm bggasts were made both on concretes and mortars. Spec-
tween the two central forces: in the first set the ratigmens, which had a prismatic shape, showed a rectan-
between arme and height/ was 0.4, inthe second one gy|ar section and a ratio length-width of 8/3. Height
the ratioc/d is 0.8 and in the third one the ratio was ; 3ssumed the following values: 38.1, 72.2, 152.4 and
1.2. The ratio between notch-length and beam-heighiog 8 mm. Width was kept constant and equal to 38.1
was set 1:2 in all tests. In order to determine maxi-mm. Each specimen had two notches in the middle,
mum nominal shear stress the following conventionaly/g in length and 2.5 mm wide. Concrete used in the

SCALE RANGE = 1:4]

formula was used: tests was characterized by a cement-fine aggregate-
p coarse aggregate ratio, expressed in weight, of 1:2:2

™ = 2% (5) and by a water-cement ratio of 3:5. The maximum
bd size of coarse aggregate, which consisted of calcare-

where b and d are specimen base and height re-OUS rocks, was,,,,=12.7 mm, while light aggregate
ad Maximum size was equal to 4.8 mm. Mortar was char-

spectively, whileP,,,, represents the maximum load . . .
reached during the test. acterized by a cemen_t-flne aggregate ratio of 1:2 and
The application (Fig. 4) of Multifractal Scale Law by a water-cement ratio of 1:2. Cement and sand used
to prepare the concrete were the same ones used to

in tests where:/d=0.4 led to the following param- .
eters:7..=1.49 MPa and,, = 77.7 mm, while with Prepare the mortar, therefore the maximum aggregate

¢/d=0.8 it led t0:7.,=1.41 MPa and,, = 99.2 mm. dimension is 4.8 mm. Compressive strength, mea-
Correlation coefficien? showed that MFSL gives a SYréd on cylindrical specimens (diameter of 76 mm

better data interpretation than SEL (Fig. 4). Dimen-&nd height of 152.4 mm), resulted 37.9 MPa for con-
sionless ratid., /d,... gave the dimensionless quan- rete and 49 MPa for mortar. A displacement-control

tity o of 7.77 in the first case and 9.92 in the seconc[F'ﬁChine was used, ‘l’VitZ n:jai()im?m Ioadt_of I:L?O KN.
one. e specimen was loaded by four vertical forces:

Parallel Mode Il tests, made on a similar geometrythrée of them were transmitted by rollers, one by a

were realized by (Bazant and Pfeiffer, 1987). Thesdlinge, in order to guarantee the equilibrium in the hor-



izontal direction. tar.
h0 (a) 4 APPLICATION OF MFSL TO EXPERIMEN-
TAL DATA IN MODE llI

Prescriptions in force (EC2, 1995) about simple and
reinforced concrete structures torsional collapse are
based on Plastic Limit Analysis exclusively. As a con-
sequence no dimensional effect is taken into account,
unlike shear collapse, in which at least gear effect, due
to superficial roughness, is measured by calculus stan-
dards.

Nevertheless, torsional collapse appears to be
clearly brittle and not ductile, as observed in tests;
these showed that load does not reach a horizon-
tal plateau but decreases rapidly after having as-
sumed the peak load value. Furthermore, brittleness
increases with element size, which means that larger
beams collapse immediately after the peak load value,
without showing anysofteningand almost explo-
sively. Therefore the conclusion can be that struc-
tural dimensions have a great influence on ultimate
strength and ductility in torsional collapse.

The need to determine strength variation for torsion
ultimate limit state seems to be even stronger, if it is
taken into account that ultimate load, measured in lon-
. gitudinally reinforced concrete beams, is smaller than
1.0 t logd ultimate load measured in not reinforced beams with

o o5 1 15 2 25 3 35 4 the same dimensions.
Figure 5. Application of MFSL to (Bazant and Pfeif-  Geometries which were tested to study the scale ef-
fer, 1987) experimental results, with a distance befect on ultimate torsion strength aimed to generate a
tween central forces af: (a) concrete, (b) mortar. stress state as much antisymmetric as possible, with
respect to the beam section, in order to originate a
macroscopic propagation of pure Mode llI.
Two sets of tests were performed for each conglomThe first set of tests in Mode Il which is going to be
erate, varying the distance between the two centra#xposed was performed by (Bazant et al., 1988) and
forces: in the first set the distance was 1fl@ndd in it was carried out on micro-concretes, reinforced and
the second one. According to the authors, the secongot. Analysed specimens had a prismatic section, with
test was necessary to verify the odd trend of the crackided and lengthZ. Three different dimensions af
which connected one notch to the other: this crackvere used, 38.1, 76.2 and 152.4 mm respectively; ra-
apparently violated classic criteria of crack propagatio L/d=8/3 was kept constant for all beams. Beams
tion. They affirmed that the crack vertical develop-were torsionally loaded by two opposite pairs on the
ment represented a propagation in pure Mode Il, butwo extreme sections. Load pair arms were taken
this was denied by Schlangen (Schlangen, 1993). Hequal to 19.1, 38.2 and 127 mm respectively. Pair
repeated the same tests, and pointed out how actualfgrces were applied at a distanedérom the extreme
the authors were controlling forces and not displacesections; ratia:/L=3/32 was constant for all beams.
ments, therefore obtaining a brittle crack propagationSpecimen maximum aggregate dimensibpn, was

Application of Multifractal Scale Law to the | set 4.8 mm. The water-cement-fine aggregate-coarse ag-
of tests on concrete (Fig. 5.a) led to the following twogregate weight proportions employed stood in the ra-
parameterst,.=0.58 MPa and,, = 159.8 mm, while tio 0.6:1:2:2. Compressive strength tests were made
for mortar (Fig. 5.b) tor,,=0.18 MPa and,, = 3181 on cylindrical specimens obtained from the beams
mm. Correlation coefficienk was equal to 0.981 ac- cast; these specimens gave a strength value o0f:43.6
cording to MFSL and to 0.997 according to SEL in 44.1 MPa.
the case of tests on concrete, while it was equal to In reinforced specimens bars were placed in corre-
0.999 according to both Laws in the case of mortarsspondence of transversal section vertices, with an in-
Dimensionless ratid., /d,,.. gave the dimensionless ternal arm of 8.1, 16.3, 31.5 mm and with a diameter
guantitya equal to 12.6 for concrete and 662 for mor- of 3.18, 6.35 and 12.7 mm respectively. For smaller

log T
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Figure 6. Torsion tests charts according to (TokatlyFigure 7. Application of MFSL to experimental re-
and Barr, 1991) (Bazant and Pfeiffer, 1987). sults of (Bazant et al., 1988): not reinforced micro-

concrete (a), reinforced microconcrete (b).

diameters yield strengtf) resulted equal to 310 MPa,
while for bigger to 413 MPa. In accordance with Elas-case. The dimensions of the specimens varied within
ticity Theory, maximum shear stress can be expresseitthie range 1:2,5, which is quite limited. Concrete had

as: a cement : light aggregate : course aggregate ratio of
1.1.8:2.8. Water : cement ratio was equal to 0.5, which
- 4.80% (6) 9gave origin to a compressive strength of 50-55 MPa.

3’ Maximum aggregate diameter wds,,, = 10 mm.

where M, is the maximum twisting moment. MESL Notch length in notched specimens was taken equal
parameters for not reinforced beam and I, re- to d/5, whered represented the SpeCimen diameter.
sulted to be equal to 1.72 MPa and 148.0 mm reln accordance with Elasticity Theory, maximum shear
spective|y, while ratidch/dmam is equa| to 30.84fit- stress can be calculated by the fO”OWIng formula:
ting according to MFSL (Fig. 7.a) gave a correla- 16M
tion coefficient of 0.977, while according to SEL a TN = z
value of R=0.994, dimensional of experimental data, md?
was obtained. For reinforced beams (Fig. 7.b) valwhereM., is the maximum twisting moment.
ues obtained are;,,=1.367 MPa/.,=246.6 mm and Applying MFSL to un-notched specimen results
len/dmax=55.11. It can be noticed in Fig.7 that the two the following values were obtained;, = 2.81 MPa,
Laws show approximately the same linear trend in thé.;, = 61.15 mm and.;,/d,,..= 6.11, while applying
tested dimensional gap, in which a monofrastedl- it to notched specimens results the values wegtes
ing is present. 5.75 MPa].;, =209.96 mm and.;, /d .= 21.0. Cor-
The second kind of torsion test was performed byrelation coefficients for un-notched specimens were
(Barr and Tokatly, 1991; Tokatly and Barr, 1991), andequal to 0.831 and 0.771 according to MFSL and SEL
it was carried out on both notched and un-notchedespectively, while for notched specimens the values
cylindrical concrete specimens. Four different diam-R(MFSL)=0.920 and R(SEL)=0.885 were obtained.
eters were tested (80, 100, 150 and 200 mm); speclt can be inferred, through a graphic coMParison of
men length was taken as twice the diameter in eachilogarithmic diagram (Fig. 8), that in this case as

x10, (7)
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