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ABSTRACT: Concrete collapse is seldom governed by crack propagation in pure Mode I (opening), due to
loading and geometrical complexities. Usually, a superposition of the three modes of propagation occurs. In
the laboratory, instead, the tests are normally performed by loading structures in Mode I. Moreover, such tests
are conducted on smaller samples with respect to the real dimension. These two factors should be analyzed in
order to get the actual strength and toughness for real structural members.
The Authors proposed the so-called Multifractal Scaling Law, largely validated in presence of failure in pure
Mode I and especially in absence of large pre-notches. In the present work, the MFSL is applied to failures in
Mode II (sliding) and Mode III (tearing). The interpretation of experimental tests for shear and torsion permits
to affirm that the interaction between the microstructural characteristic length and the external structural size
governs the scale effects also in Mode II and III .

1 INTRODUCTION

Fracture propagation in concrete and mortar has been
generally analyzed when the crack advances orthogo-
nally to the maximum principle stress, in pure Mode I
(opening mode). Effectively, in concrete structures we
have always experimentally observed fracture propa-
gation in Mode I, even in presence of bi- and tri-axial
state of stress, as in the collapse of large beams and
plates, in the collapse for tear and for punching. Con-
sequently, the strength and toughness parameters def-
inition for collapse in Mode II and III is often consid-
ered useless.

It is opportune however to distinguish between
crack initiationandlimit state. This is essential nowa-
days as semi-probabilistic approaches for design at
limit state split the two aspects and tend to assure
structural integrity with respect to catastrophic col-
lapse. In fact, crack initiation of the single micro-
crack is always governed by local tension stress
(Mode I) generated by singularities due to micro-
structural heterogeneities and to pre-existent defects,
while meso- and macro-phase of propagation impose
the interaction ofin-plane shear or sliding(Mode II)
andantiplane shear or tearing(Mode III).

Fracture propagation in Mode II and III has been
observed, for concrete, in all dynamic shear test, dur-
ing impact resistance and in bullet penetration tests.
In all these cases, a generalized fracture toughness
has been determined, and it has been obtained that
GII > GIII > GI.

Figure 1. Mechanisms of transmission for shear
forces in ultimate limit state.

When the microstructural roughness is involved in
propagation resistance mechanisms, it is necessary to
define correct mechanics parameters for Mode II and
II. This is what happens for shear and tearing ulti-
mate limit state, for seismic loads and for all struc-
tures cracked under loads in general. It is commonly
considered that in these conditions, crack propagation
in Mode I is localized and discontinuous, limited to
very small scales, while Mode II and III dominate in
collapse phase, characterized by continuous fracture.
This phenomenon is evident in twist test on notched
specimen by (Bažant et al., 1988), where Elastic The-
ory provides a stress and strain field, antisymmetric
with respect to final fracture surface. As the fracture



surfaces are plane and normal to applied twist mo-
ment, they represent Mode III fractures. The micro-
structural interlocking appears very important in tear
collapse, the warping being not permitted.

The present Codes are generally calibrated to give
an adequate safety parameter with respect to crack
initiation for shear-twist. Unfortunately, crack initi-
ation load is generally not proportional to collapse
load. This can be, in fact, much less or only lightly
less then ultimate load, by varying size of the consid-
ered element and other factors (micro-structure, load
rate, etc.). Consequently, a correction from classical
formulae is necessary, in order to maintain a homoge-
neous safety margin with respect to shear brittle col-
lapse by varying structural size.

The present Italian Code (DM, 1996), in accor-
dance with Eurocode 2 (EC2, 1995), considers both
the aggregate interlocking (Fig. 1.a), which increases
the resistance shear load for beams with a depthd ≤
0.60m, and the so called Dowel action, which rep-
resents the load capacity of a longitudinal steel rein-
forcement in the normal direction with respect to its
axis (Fig. 1.b). This Code (DM, 1996) establishes to
calculate theresistance shear load at ultimate limit
stateVsdu as following:

Vsdu ≤ 0,25fctdr(1 + 50ρl)bwdδ, (1)

in which fctd is the tensile strength;r = (1.6 − d),
with d (section depth) expressed in meters andd ≤
0.60 m.;ρl = Asl/(bwd): this coefficient takes into
accountAsl, which is the longitudinal reinforcement
area;bw is the shear resisting section width;δ is a
dimensionless coefficient depending on load condi-
tions. Eurocode 2 (EC2, 1995) similarly establishes
to calculate the shearing strengthVRd1 as following:

VRd1 = [τRdk(1,2 + 40ρ1) + |0,15|σcp]bwd, (2)

in which τRd = (0,25 fctk0,05)/γc is the unitary shear-
ing strength,γc being a dimensionless coefficient;
k = (1.6 − d); σcp = NSd/Ac, NSd being the longi-
tudinal force in the section, due to loads or to pre-
compression. These two formulas are very similar, be-
cause both take into account the contribution of the
aggregates as well as of steel reinforcements. While
in the Italian Code thoughVsdu is proportional to the
coefficient(1+50ρl), in the EurocodeVRd1 is propor-
tional to the coefficient only ifσcp = 0.
These approaches seem inadequate. They are empiric
and do not take into account the micro-structural char-
acteristic of concrete.

According to ACI Building Code (ACI-318-89,
1989), the basic expression for Shear StrengthVC of
members subject to shear and flexure without shear
reinforcement is the following:

VC =

(

1.9
√

f ′

c + 2500ρw

Vud

Mu

)

bwd, (3)

in which the three variables (
√

f ′

c is a measure of con-
crete tensile strength,ρw andVud/Mu, whereVu and
Mu are the factored shear and moment occurring at
section considered) affect shear strength. Some re-
search data (Kani, 1967) has indicated that in eq.3
shear strength decreases as the overall depth of mem-
ber increases.

2 SIZE-EFFECT LAW FOR STRENGTH IN
MODE II AND III

Dimensional scale-effects emerge in many aspects of
the so-called disordered materials mechanical behav-
ior. The primary cause of these dimensional effects
is represented by the heterogeneity of the material,
which is the origin of local cracks in Mode I as well.
The existence of an internal length which interacts
with the external dimension of the considered spec-
imen is the consequence. The collapse due to brittle
propagation of a crack in Mode II or III clearly shows
the peculiar features of critical phenomena, character-
ized by hierarchical evolution of micro-cracks, start-
ing from the initial casual distribution of defects to
the coalescence of micro-cracks in the final crack sur-
face. The progressive transition from local Mode I to
global Modes II and III shows as well the typical cus-
pidal (catastrophic) type instabilities.

The self-similar and hierarchical evolution of the
damage has been extensively verified by experimen-
tal tests (Carpinteri et al., 1995). The multi-scale
propagation in Modes II and III reflects the hier-
archical character of concrete microstructure, which
ranges from the microscopical scales of clinker to the
mesoscales of aggregates, embedded in the concrete
matrix. Fractal Geometry allows to abandon the in-
teger dimensions of the euclidean sets and to syn-
thetically describe, by means of non-integer topolog-
ical dimensions, the heterogeneous and self-similar
domains inside the concrete. In this way it is possi-
ble to quantify the degree of disorder of the material
microstructure and to deduce the structural effects of
the microscopic complexity. Due to the chaotic evo-
lution of the damage in the material, the assumption
of a lacunar (rarefied fractal of dimension less than
2) reacting section is however more adherent to re-
ality than the classical assumption of an euclidean
smooth and coMPact area (dimension = 2). It is con-
sequently necessary to consider a topological dimen-
sion∆τ less then 2 ([L]2−dτ ), wheredτ represents the
dimensional decrement due to the chaotic damage to
all scales. In this manner it is possible to draw an ele-
gant and synthetic description of the strain field when
varying the observing scale, and, by means of a renor-



malization procedure (Carpinteri, 1994), the stressτ ∗

([F][L] −(2−dτ )) is obtained; this parameter is anoma-
lous but independent from the scale. This invariant
quantity allows to easily deduce the dimensional de-
pendence of the nominal strength parameterτN (de-
fined on the idealligamentas [F][L]−2), which is con-
trolled by the fractal dimensional decrementdτ .

Applying such ideas to structural level, the nomi-
nal shear strength decreases with considered element
height increasing; this variation is controlled by the
fractal dimension∆τ (and hence by the damage en-
tity) of the resisting section. On the other side, as
the structural dimension increases, considered stress
fields progressively homogenize. Taking into account
the limits of microscopes scales, the fractal dimen-
sion cannot be lower than 1.5; this confirms that frac-
ture propagation process is a dissipative (Brownian)
phenomenon. Small structures will take more bene-
fit of the propagation process fractal character. On
the other side in larger structures fractality disappears
at a structural level (even if it still controls the phe-
nomenon at a local level), and typical euclidean de-
scriptions give acceptable results. Dimensional scale
effect is very strong on small beams, in which the dis-
order influence is remarkable, while it smoothes down
with external dimensions increasing. This transition
from disorder to order (geometrical multifractality) is
controlled by the interaction between the characteris-
tic microstructural length (which can be expressed by
an internal lengthlch) and external dimensions.

The multifractal approach fully agrees with the
classic Cohesive Model (Hillerborg et al., 1976); this
model considers the ratio between the characteristic
dimension of the process zone (in which energetic
dissipations take place) and the beam dimension as
a marker of the influence of material microstructural
disorder on material strength. On the other side, this
approach is revolutionary with respect to Bažant Scale
Energy Law (SEL) (Bažant, 1984), since the scale ef-
fect rate has an opposite trend.

On the basis of these arguments, a simple equa-
tion which allows to model the scale effect on ten-
sile strengthσN (Mode I), has been obtained, and it is
largely supported by available data (Carpinteri et al.,
1995). Such relationship can be extended to Mode II
and III failure cases, simply introducing a nominal
shear strength parameterτN instead of normal tensile
stressσN . Applying the renormalizing procedure and
considering the euclidean fractal transition, the ana-
lytical expression of MultiFractal Scale Law (MFSL)
can be written as:

τN = τ∞

(

1 +
lch
d

)
1

2

(4)

wherelch represents the internal length that sets the
limit between fractal behavior, in which disorder pre-

vails and scale effect is strongly present, and eu-
clidean behavior, where the disorder effect disappears
and a constant asymptotic value of shear resistance
τ∞ is reached. It needs to be noticed that the scaling
curve slope is ruled by the ratio betweenlch and the
referring structure dimensiond, and that the Brown-
ian hypothesis gives the exponent 1/2, which has the
same value as the curve slope (maximum scale effect)
for very small structures. In the bilogharitmic diagram
(fig 2), MFSL shows a concave behavior, where SEL
shows a convex behavior (Bažant, 1984).

Figure 2. Multifractal Scale Law for ultimate shear
stress.

From an engineering point of view, eq. 4 allows to
determine the shear strength (or the torsional strength)
on very large structures, while the SEL forecasts null
resistance on larger scales. Furthermore, the internal
length parameter, which is function of concrete mi-
crostructural characteristics, allows to make a distinc-
tion among various concrete mixtures and to iden-
tify, case by case, the minimum dimension exceed-
ing which classic euclidean model can be used. A
great number of tests, as shown in the following para-
graphs, confirms the validity of MFSL in cases of
collapse due to propagation in Mode II and III. The
dispersion of experimental strength values decreases
with specimen dimension increasing, showing the es-
sential influence of heterogeneity.

3 APPLICATION OF MFSL TO EXPERIMEN-
TAL DATA IN MODE II

Experimental tests in which concrete specimens are
subject to a pure Mode II state of stress are analysed
in this paragraph. It is important to notice that from
an experimental point of view, creating a load system
which generates a pure Mode II state of stress is very
difficult, therefore the knowledge of such collapse is
still quite limited and related results are very few. The
four point shear specimen(Fig.3), proposed for the
first time by Iosipescu (Iosipescu, 1967), is the mostly
used shearing test model and it has been further devel-



oped in many versions. Such double-notched geome-
try presents a state of stress which is associable to a
mixed Mode, where Mode II is clearly prevalent over
Mode I.

Figure 3. Shearing test chart according to Iosipescu
(Iosipescu, 1967).

A number of shearing tests were performed at Po-
litecnico di Torino (Bocca et al., 1990) , using the
classicfour point shear specimengeometry. Speci-
men width was kept constant and equal tob=100 mm,
with a ratio span-heightl/d of 4, and withd=50,
100, 200 mm for the three different tested dimensions.
Therefore the reached scale range was equal to1:4.
The concrete had a water-cement ratio of 0.5, with
maximum aggregate dimensiondmax=10 mm. Com-
pressive strength, measured on 160 mm side cubes,
resulted equal to 33.7 MPa. A displacement-control
machine (with maximum load of 100 kN) was used
to apply the load. A constant increase of the slip be-
tween the two crack faces of 2.5×10−8 m/s, measured
by a DD1 transducer, was taken as a control parame-
ter. Three sets of tests were made, varying the arm be-
tween the two central forces: in the first set the ratio
between armc and heightd was 0.4, in the second one
the ratioc/d is 0.8 and in the third one the ratio was
1.2. The ratio between notch-length and beam-height
was set 1:2 in all tests. In order to determine maxi-
mum nominal shear stress the following conventional
formula was used:

τN =
Pmax

bd
(5)

where b and d are specimen base and height re-
spectively, whilePmax represents the maximum load
reached during the test.

The application (Fig. 4) of Multifractal Scale Law
in tests wherec/d=0.4 led to the following param-
eters:τ∞=1.49 MPa andlch = 77.7 mm, while with
c/d=0.8 it led to:τ∞=1.41 MPa andlch = 99.2 mm.
Correlation coefficientR showed that MFSL gives a
better data interpretation than SEL (Fig. 4). Dimen-
sionless ratiolch/dmax gave the dimensionless quan-
tity α of 7.77 in the first case and 9.92 in the second
one.

Parallel Mode II tests, made on a similar geometry,
were realized by (Bažant and Pfeiffer, 1987). These

Figure 4. Application of Multifractal Scale Law to
shearing tests (Bocca et al., 1990): (a)c=0.4; (b)
c=0.8.

tests were made both on concretes and mortars. Spec-
imens, which had a prismatic shape, showed a rectan-
gular section and a ratio length-width of 8/3. Height
d assumed the following values: 38.1, 72.2, 152.4 and
308.8 mm. Width was kept constant and equal to 38.1
mm. Each specimen had two notches in the middle,
d/6 in length and 2.5 mm wide. Concrete used in the
tests was characterized by a cement-fine aggregate-
coarse aggregate ratio, expressed in weight, of 1:2:2
and by a water-cement ratio of 3:5. The maximum
size of coarse aggregate, which consisted of calcare-
ous rocks, wasdmax=12.7 mm, while light aggregate
maximum size was equal to 4.8 mm. Mortar was char-
acterized by a cement-fine aggregate ratio of 1:2 and
by a water-cement ratio of 1:2. Cement and sand used
to prepare the concrete were the same ones used to
prepare the mortar, therefore the maximum aggregate
dimension is 4.8 mm. Compressive strength, mea-
sured on cylindrical specimens (diameter of 76 mm
and height of 152.4 mm), resulted 37.9 MPa for con-
rete and 49 MPa for mortar. A displacement-control
machine was used, with maximum load of 100 kN.
The specimen was loaded by four vertical forces:
three of them were transmitted by rollers, one by a
hinge, in order to guarantee the equilibrium in the hor-



izontal direction.

Figure 5. Application of MFSL to (Bažant and Pfeif-
fer, 1987) experimental results, with a distance be-
tween central forces ofd: (a) concrete, (b) mortar.

Two sets of tests were performed for each conglom-
erate, varying the distance between the two central
forces: in the first set the distance was 1/12d andd in
the second one. According to the authors, the second
test was necessary to verify the odd trend of the crack
which connected one notch to the other: this crack
apparently violated classic criteria of crack propaga-
tion. They affirmed that the crack vertical develop-
ment represented a propagation in pure Mode II, but
this was denied by Schlangen (Schlangen, 1993). He
repeated the same tests, and pointed out how actually
the authors were controlling forces and not displace-
ments, therefore obtaining a brittle crack propagation.

Application of Multifractal Scale Law to the I set
of tests on concrete (Fig. 5.a) led to the following two
parameters:τ∞=0.58 MPa andlch = 159.8 mm, while
for mortar (Fig. 5.b) to:τ∞=0.18 MPa andlch = 3181
mm. Correlation coefficientR was equal to 0.981 ac-
cording to MFSL and to 0.997 according to SEL in
the case of tests on concrete, while it was equal to
0.999 according to both Laws in the case of mortars.
Dimensionless ratiolch/dmax gave the dimensionless
quantityα equal to 12.6 for concrete and 662 for mor-

tar.

4 APPLICATION OF MFSL TO EXPERIMEN-
TAL DATA IN MODE III

Prescriptions in force (EC2, 1995) about simple and
reinforced concrete structures torsional collapse are
based on Plastic Limit Analysis exclusively. As a con-
sequence no dimensional effect is taken into account,
unlike shear collapse, in which at least gear effect, due
to superficial roughness, is measured by calculus stan-
dards.

Nevertheless, torsional collapse appears to be
clearly brittle and not ductile, as observed in tests;
these showed that load does not reach a horizon-
tal plateau but decreases rapidly after having as-
sumed the peak load value. Furthermore, brittleness
increases with element size, which means that larger
beams collapse immediately after the peak load value,
without showing anysofteningand almost explo-
sively. Therefore the conclusion can be that struc-
tural dimensions have a great influence on ultimate
strength and ductility in torsional collapse.

The need to determine strength variation for torsion
ultimate limit state seems to be even stronger, if it is
taken into account that ultimate load, measured in lon-
gitudinally reinforced concrete beams, is smaller than
ultimate load measured in not reinforced beams with
the same dimensions.

Geometries which were tested to study the scale ef-
fect on ultimate torsion strength aimed to generate a
stress state as much antisymmetric as possible, with
respect to the beam section, in order to originate a
macroscopic propagation of pure Mode III.
The first set of tests in Mode III which is going to be
exposed was performed by (Bažant et al., 1988) and
it was carried out on micro-concretes, reinforced and
not. Analysed specimens had a prismatic section, with
sided and lengthL. Three different dimensions ofd,
were used, 38.1, 76.2 and 152.4 mm respectively; ra-
tio L/d=8/3 was kept constant for all beams. Beams
were torsionally loaded by two opposite pairs on the
two extreme sections. Load pair arms were taken
equal to 19.1, 38.2 and 127 mm respectively. Pair
forces were applied at a distancea from the extreme
sections; ratioa/L=3/32 was constant for all beams.
Specimen maximum aggregate dimensiondmax was
4.8 mm. The water-cement-fine aggregate-coarse ag-
gregate weight proportions employed stood in the ra-
tio 0.6:1:2:2. Compressive strength tests were made
on cylindrical specimens obtained from the beams
cast; these specimens gave a strength value of 43.6÷
44.1 MPa.

In reinforced specimens bars were placed in corre-
spondence of transversal section vertices, with an in-
ternal arm of 8.1, 16.3, 31.5 mm and with a diameter
of 3.18, 6.35 and 12.7 mm respectively. For smaller



Figure 6. Torsion tests charts according to (Tokatly
and Barr, 1991) (Bažant and Pfeiffer, 1987).

diameters yield strengthfy resulted equal to 310 MPa,
while for bigger to 413 MPa. In accordance with Elas-
ticity Theory, maximum shear stress can be expressed
as:

τN = 4.80
Mz

d3
, (6)

whereMz is the maximum twisting moment. MFSL
parameters for not reinforced beamsτ∞ and lch re-
sulted to be equal to 1.72 MPa and 148.0 mm re-
spectively, while ratiolch/dmax is equal to 30.84.fit-
ting according to MFSL (Fig. 7.a) gave a correla-
tion coefficient of 0.977, while according to SEL a
value ofR=0.994, dimensional of experimental data,
was obtained. For reinforced beams (Fig. 7.b) val-
ues obtained are:τ∞=1.367 MPa,lch=246.6 mm and
lch/dmax=55.11. It can be noticed in Fig.7 that the two
Laws show approximately the same linear trend in the
tested dimensional gap, in which a monofractalscal-
ing is present.

The second kind of torsion test was performed by
(Barr and Tokatly, 1991; Tokatly and Barr, 1991), and
it was carried out on both notched and un-notched
cylindrical concrete specimens. Four different diam-
eters were tested (80, 100, 150 and 200 mm); speci-
men length was taken as twice the diameter in each

Figure 7. Application of MFSL to experimental re-
sults of (Bažant et al., 1988): not reinforced micro-
concrete (a), reinforced microconcrete (b).

case. The dimensions of the specimens varied within
the range 1:2,5, which is quite limited. Concrete had
a cement : light aggregate : course aggregate ratio of
1:1.8:2.8. Water : cement ratio was equal to 0.5, which
gave origin to a compressive strength of 50-55 MPa.
Maximum aggregate diameter wasdmax = 10 mm.
Notch length in notched specimens was taken equal
to d/5, whered represented the specimen diameter.
In accordance with Elasticity Theory, maximum shear
stress can be calculated by the following formula:

τN =
16Mz

πd3
x10, (7)

whereMz is the maximum twisting moment.
Applying MFSL to un-notched specimen results

the following values were obtained:τ∞ = 2.81 MPa,
lch = 61.15 mm andlch/dmax= 6.11, while applying
it to notched specimens results the values were:τ∞ =
5.75 MPa,lch = 209.96 mm andlch/dmax= 21.0. Cor-
relation coefficients for un-notched specimens were
equal to 0.831 and 0.771 according to MFSL and SEL
respectively, while for notched specimens the values
R(MFSL)=0.920 and R(SEL)=0.885 were obtained.
It can be inferred, through a graphic coMParison of
bilogarithmic diagram (Fig. 8), that in this case as



Figure 8. Application of MFSL to experimental re-
sults of (Barr and Tokatly, 1991; Tokatly and Barr,
1991): un-notched specimens (a), notched specimens
(b).

well MFSL gives a better interpretation of experimen-
tal data than SEL.

5 CONCLUSIONS
Experimental tests for shear and torsion on concrete
specimens subject to a pure Mode II or a pure Mode
III state of stress show the validity of the Multifractal
Scaling Law application in these cases. It is demon-
strated in these tests that the interaction between the
microstructural characteristic length and the external
structural size governs the scale effects not only in
Mode I but in Mode II and III as well. The MFSL al-
lows to obtain significant constant values for strength
and toughness for large structures, starting from the
mechanical properties determined in the laboratory.
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