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ABSTRACT: The bridged crack model has been developed for modelling the flexural behaviour of reinforced
concrete beams and related size effects explaining brittle-ductile-brittle failure mode transitions. In the present
paper the model is extended to analyze shear cracks and concrete crushing, introducing a given shape for the
hypothetical crack trajectory and determining the initial crack position and the load versus crack length curve
for three point bending problems. The proposed formulation reproduces the pure Mode I flexural behaviour
as a particular case, so that the flexural and the diagonal tension (shear) failures modes can be immediately
compared to detect which one dominates and determine the relevant failure load. A concrete crushing criterion
completes the model. All the mutual transitions between the different collapse mechanisms can be predicted.
In the paper these transitions are shown by varying the governing nondimensional parameters.

1 INTRODUCTION
For a long time, the transitions between flexural and
diagonal tension failures in reinforced concrete ele-
ments —inside a consistent theoretical framework—
have represented an unsolved problem. The main is-
sue for the present analysis is to get a consistent
modelling of shear cracks behavior and diagonal ten-
sion failure as well as concrete crushing mechanisms.
These problems, despite numerous extensive stud-
ies over the past 50 years, still remain unsolved for
a completely satisfying framework, unifying all the
failure modes, so that a direct relation between failure
mode transition could be drawn.

Shear crack propagation and diagonal tension fail-
ure have been addressed in the literature by several
authors with different approaches. In the field of Frac-
ture Mechanics and using a cohesive model to de-
scribe concrete behaviour, some analyses have been
performed by Gustafson and Hillerborg (Gustafsson
and Hillerborg 1983) and Niwa (Niwa 1997) among
others. In the framework of Linear Elastic Fracture
Mechanics and in order to avoid finite element com-
putations, some models are especially remarkable in
the long list of literature contributions. In particular,
Jenq and Shah (Jenq and Shah 1989) analysed the di-
agonal shear fracture superposing the contribution of
concrete and steel bars, with a technique that is some-

how conceptually close to the bridged crack model
(Carpinteri 1984). Some further development of this
work with other original contributions were made by
So and Karihaloo (So and Karihaloo 1993).

The bridged crack model has been originally pro-
posed by Carpinteri (Carpinteri 1981; 1984) for the
study of reinforced concrete beams by Fracture Me-
chanics. The problem of the size effect and the brittle-
ductile transition were analyzed with reference to the
problem of minimum reinforcement (Carpinteri et al.
1999; Bosco and Carpinteri 1992). Subsequently, the
action of cohesive stresses has been introduced in ad-
dition to that of the reinforcing bars (Carpinteri et al.
2003). More recently, the model has been further ex-
tended analysing concrete crushing by Fracture Me-
chanics concepts (Carpinteri et al. 2004) and leading
to analyse in a consistent way the interaction between
flexural (yielding) and crushing failures. Moreover,
while limit state analysis yields only the ultimate load,
the bridged crack model reveals in addition scale ef-
fects, instability phenomena and brittle-ductile failure
transition of the structural member.

In the present work, the behaviour of reinforced
concrete beams without stirrups is analyzed, using the
bridged crack model. To extend the model to account
for the shear cracks behavior and to evaluate diago-
nal tension failure load, some additional hypotheses



about the crack trajectory and for the evaluation of
the stress-intensity factors are assumed. In this way
the different collapse modes are joined together into
a unified general model, so that the simulation of
the transitional phenomena is naturally accomplished.
The model is analysed showing the influence of the
variation in the nondimensional parameters on the
mechanical response of the reinforced concrete ele-
ment and the related failure mode transitions.
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Figure 1: Cracked element.

2 MODELLING OF FLEXURAL AND SHEAR
CRACKS

The bridged crack model can be applied for studying
the propagation of a crack in a reinforced concrete
beam assuming as monotonically increasing control
parameter the length of the crack path. Linear Elas-
tic Fracture Mechanics is assumed for concrete with
a crack propagation condition ruled by the compari-
son of the stress intensity factors KI to the concrete
toughness KIC . Neither closed form solution nor non-
linear regressions of numerical data are available for
evaluating the stress-intensity factors of the geometry
given in Figure 1. Therefore, some assumptions have
been made to derive suitable approximations.

The adopted model scheme is reported in Figure
1 along with the used symbols. The geometric di-
mensions are converted into nondimensional quanti-
ties, after dividing by the height h in the case of ver-
tical distances and by the shear span l in the case
of horizontal distances. Thus, the following nondi-
mensional parameters are defined: let α = x

l
be the

nondimensional horizontal distance from the support
to the crack tip, ξ = a

h
the crack depth, α0 = x0

l
the initial crack mouth position and ζ = c

h
the rein-

forcement cover. All these nondimensional parame-
ters range from 0 to 1. Additionally, let λl be the shear
span slenderness ratio (λl = l

h
).

The crack trajectory Γ is considered as formed by a
first vertical segment Γ1 from the bottom to the rein-
forcement layer. A second part Γ2 is assumed being a
power law with some given exponent, going from the
end of the first part to the load point, Fig. 2. The crack
trajectory Γ=Γ1∪Γ2 is defined by the nondimensional
function:

α(ζ, ξ) =





α0 0 ≤ ξ ≤ ζ

α0+

(
ξ − ζ

1− ζ

)µ

(1− α0) ζ ≤ ξ ≤ 1
(1)
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Figure 2: Crack trajectories, (a) λl=2.5; (b) λl=4.

The constitutive relation for the reinforcement bars
is assumed rigid-perfectly plastic with no upper limit
to the maximum deformation. The maximum for the
bridging reinforcement reaction is defined by PP =
Asσy, where As is the reinforcement area and σy the
minimum between yielding and sliding stress for the
bars.

With reference to Figure 1, let KI be the stress in-
tensity factor at the crack tip. By superposition, it is
given by the sum of the stress intensity factor KIV ,
due to the bending moment associated to the shear
force V , and KIPγ , due to the closing force at the re-
inforcement position:

KI = KIV −KIPγ (2)

To evaluate the stress intensity factor due to the ex-
ternal load KIV , Jenq and Shah (Jenq and Shah 1989)
assumed that it can be approximated by the stress-
intensity factor of a bent beam with a symmetric edge
notch of depth a subjected to the bending moment
corresponding to the cross section at the mouth of the
crack. Here a similar approach is followed, although
the variation of the bending moment at each section
due to the crack path will be accounted for. Therefore:

KIV =
V lα(ζ, ξ)

h
3
2 b

YM(ξ) =
V

h
1
2 b

YV (ζ, ξ)λl (3)

The stress-intensity factor produced at the crack tip
by the applied forces P acting at the level of the rein-
forcement is obtained from the case of vertical crack,
KIP . Several numerical analyses by boundary ele-
ments (Portela and Aliabadi 1992) have been made
to get an approximation to the stress-intensity factor
for different positions of the crack tip. It is observed



that the stress intensity factor is a function of the an-
gle γ, see Figure 1. Consequently, a function β(γ) to
approximate the variation YP with γ has been defined.
Finally, the stress intensity factor due to the reinforce-
ment reaction P is given by

KIPγ =
P

h
1
2 b

YP (ζ, ξ)β(γ) =
P

h
1
2 b

YPγ (ζ, ξ) (4)

with β(γ) = ( γ
90

)0.2 and γ expressed in degrees.
The functions YM(ξ) and YP (ζ, ξ) are given in

the stress intensity factor handbook (Okamura et al.
1975).

Let ρ be the bar reinforcement percentage defined
as ρ = As

bh
and w the crack opening at reinforcement

level. The following nondimensional parameters can
be defined

NP =
σyh

1
2

KIC

ρ; w̃ =
wE

KICh
1
2

(5)

where NP is the brittleness number defined by
Carpinteri (Carpinteri 1981; 1984) and E is the
Young’s modulus of the material.

Substituting Eqs. (3) and (4) into Eq. (2), the fol-
lowing nondimensional equilibrium equation is ob-
tained

ṼF =
1

λlYV (ξ)

[
1 + NP P̃ YPγ (ζ, ξ)

]
(6)

where ṼF = VF /(KICh
1
2 b) and P̃ = P/PP .

The crack opening, w̃ at the nondimensional coor-
dinate ζ can be determined by adding the two con-
tributions of shear Ṽ and bar reaction P̃ . The nondi-
mensional opening evaluated at the crack propagation
shear V =VF , presents the following expression:

w̃ =2λlṼF

∫ ξ

ζ

YV (z)YPγ (ζ, z)g(ζ, z)dz−

2NP P̃

∫ ξ

ζ

Y 2
Pγ

(ζ, z)g(ζ, z)dz (7)

where g(ζ, ξ) is the Jacobian mapping the curvilin-
ear integral along the crack trajectory onto the interval
[0, ξ] (Carpinteri et al. 2006).

If the relative displacement in the cracked cross-
section at the level of reinforcement is assumed to be
equal to zero, up to the yielding or slippage of the re-
inforcement (w̃=0), we obtain the displacement com-
patibility condition that allows us to obtain the un-
known force P̃ as a function of the applied shear Ṽ .
In fact, from Eq. (7), we may define:

r′′(ζ, ξ) =
λlṼF

NP P̃
=

∫ ξ

ζ
Y 2

Pγ
(ζ, z)g(ζ, z)dz

∫ ξ

ζ
YV (z)YPγ (ζ, z)g(ζ, z)dz

(8)

If the force transmitted by the reinforcement is
equal to PP =σyAs, in other words, if the reinforce-
ment traction limit has been reached (ṼF =ṼP ), from
(6) we obtain:

ṼP =
1

λlYV (ξ)

[
1 + NP YPγ (ζ, ξ)

]
(9)

On the other hand, if ṼF < ṼP , the following rela-
tion holds from Eqs. (6) and (8):

ṼF =
1

λl

[
YV (ξ)− YPγ (ζ, ξ)

r′′(ζ, ξ)

] (10)

Therefore, according to the model, when ṼF < ṼP

the shear of crack propagation ṼF depends only on
the relative crack depth ξ, and is not affected by the
brittleness number NP .

3 MODELLING CONCRETE CRUSHING
The problem of concrete crushing in the upper part
of the beam is analyzed evaluating the compressive
stress in the cracked element. Concrete crushing will
be detected by comparing the stress σc to the crushing
strength σcu.

The compressive stress at the upper edge of the
cracked section is the sum of the contributions due
to shear and reinforcement reaction:

σc = σV
c + σP

c (11)

Introducing two suitable shape functions Y M
σ (ξ)

and Y P
σ (ζ, ξ) (Carpinteri et al. 2003) and letting

Y V
σ (ξ) = α(ζ, ξ)Y M

σ (ξ), the following expression is
derived

σc = λl
V

bh
Y V

σ (ξ)− P

bh
Y P

σ (ζ, ξ) (12)

Let V = VC be the concrete crushing load, at-
tained when σc = σcu. In nondimensional form we
may write:

σcuh
1
2

KIC

= Ṽ λlY
VC
σ (ξ)−NP P̃ Y P

σ (ζ, ξ) (13)

Consequently, in the same way as for the steel
yielding mechanism, a brittleness number for the
crushing failure can be naturally defined:

NC =
σcuh

1
2

KIC

(14)



so that the nondimensional shear for compression
failure is given by

ṼC =
1

λlY V
σ (ξ)

[
NC + NP P̃ Y P

σ (ζ, ξ)
]

(15)

To eliminate the dependence on P̃ in (15), we may
observe that, at steel yielding, it is P̃ = 1 and there-
fore, from Eq. (15):

ṼC =
1

λlY V
σ (ξ)

[
NC + NP Y P

σ (ζ, ξ)
]

(16)

In the same way, when P̃ < 1, from (8) it is:

ṼC=
1

λlY V
σ (ξ)

[
NC+

Y P
σ (ζ, ξ)

YV (ξ)r′′(ζ, ξ)−YPγ (ζ, ξ)

]
(17)

The nondimensional shear of Eqs. (16) and (17)
produces, for a given crack depth ξ, the crushing
stress σc = σcu in the uppermost part of the beam. On
the other hand, for equilibrium and compatibility be-
ing satisfied, only the non-dimensional shear of crack
propagation, Eqs. (9) and (10), is compatible with a
given crack depth ξ, so that crushing failure occurs
when the crack propagation non-dimensional shear,
Eqs. (9) and (10), is equal to the non-dimensional
crushing shear, Eqs. (16) and (17) respectively.

For ṼC = ṼF ≥ ṼP , we have:

NC + NP Y P
σ (ζ, ξ)

Y V
σ (ξ)

=
1 + NP YP (ζ, ξ)

YV (ξ)
(18)

as well as, for ṼC = ṼF < ṼP , it is:

NC + Y P
σ (ζ,ξ)

[YV (ξ)r′′(ζ,ξ)−YPγ (ζ,ξ)]

λlY V
σ (ξ)

=
1

YV (ξ)−YPγ (ζ, ξ)

r′′(ζ, ξ)

(19)

Equations (18) and (19) determine the points of
crushing failure in in the crack depth vs. non-
dimensional shear diagram.

4 FLEXURAL AND SHEAR CRACK PROPAGA-
TION

In this section it will be shown how the value of
the initial crack position α0 affects the mechani-
cal response of the beam and implies the stabil-
ity/instability of the cracking process.

For the sake of clarity, reference is made to a real
example, based on experimental results. A more de-
tailed explanation can be found in (Carpinteri et al.
2006). The experimental test has been performed by

Bosco and Carpinteri (Bosco and Carpinteri 1992),
and it was labeled as B100-06. The material proper-
ties and beam geometry of this test are shown in Fig-
ure 3a.

Span=1000mm (l =500mm)
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KIC =63.4N/mm
3/2

σy=518 Mpa

Three point bending test.
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Figure 3: Nondimensional shear force vs. crack depth:
(a) material properties and beam geometry; (b) ini-
tial crack position α0=1.0; (c) initial crack position
α0=0.70; (d) initial crack position α0=0.30.

The following nondimensional parameters charac-
terize the simulation case: λl = 2.5, ζ = 0.1, NP =
1.41 and a 4th order crack trajectory curve (µ = 4)
is assumed. Figures 3b-d show the nondimensional
shear force vs. crack depth curves for the initial crack
position α0 in the interval [0.3, 1.0] and a sketch of
the crack trajectories.

It is well-known that a crack growth may present
stable or unstable behaviour. When the crack growth
is stable, an increase in the crack depth requires a load
increase to fulfil the model equations. On the contrary,
unstable crack growth implies a load decrease. Both
kinds of behavior can occur at different load levels
during crack propagation, see Figures 3b, c and d.

When the initial crack position is at midspan (α0 =
1.0), Figure 3b, the model converges to the original
bridged crack for beams in flexure (no shear). Im-
mediately after the crack crosses the reinforcement,
an unstable branch begins. This turns stable for a
crack depth ξ ' 0.3. Then the nondimensional shear
force grows until the yielding of steel takes place
(ξ ' 0.7). Physically the reinforcement reaction stabi-



lizes the initial unstable crack propagation and finally
produces the steel yielding.

The second plot, Figure 3c, computed for an ini-
tial crack position α0 = 0.70, shows the same charac-
teristic behaviour for low values of the crack depth,
an unstable branch follows the stable branch for a
crack depth value of 0.65. From this point on the crack
growth is unstable leading the beam to failure. In this
case, as for the flexural crack α0 = 1.00, the reinforce-
ment reaction stabilizes the crack propagation for low
crack depth but there is a point where the propagation
becomes unstable. The change in the nature of the
propagation provokes the relative maximum that is
observed in Figure 3c. This change for shear crack in
reinforced concrete beams without stirrups has been
reported experimentally by Carmona (Carmona et al.
2006).
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Figure 4: (a) Nondimensional shear force, ṼF vs.
crack depth, ξ; (b) detail, the thick line is the curve
of the minimum critical shear load.

Figure 4a shows a superposition of the plots for dif-
ferent initial crack positions. Observe that, neglect-
ing the singularity at the reinforcement position, each
curve presents a relative maximum with the exception
of cracks near the support which are unstable during
all the propagation process. The thick line in Figure
4b represents the crack having the property that its rel-
ative maximum is minimum among the maxima. This
relative maximum is assumed as the shear failure load
and the curve where it is located allows to determine
the initial crack position as well.

The minimum in the shear force when the crack
initiation position is changed along the shear span has
been reported also by Niwa (Niwa 1997) in a Finite
Element numerical study. Niwa fixed the shear span
to depth ratio λl to 2.4 and assumed a linear crack
path from the initiation point to the load point. The
position for the crack initiation reported for the min-
imum shear resistance in his study was 0.62 and the
nondimensional shear was 0.33. These results com-
pare fairly well with the results of the present model.

5 CONCRETE CRUSHING FAILURE
The equations (16) and (17) reported in Section 3,
give the shear producing crushing failure. But, to sat-

isfy equilibrium and compatibility, the crushing shear
must be equal to the shear of crack propagation, as
expressed by (18) and (19). Therefore, the crushing
points expressed by (18) and (19) can be found by in-
tersecting the crushing curve (16) and (17) with the
crack propagation curve given by (9) and (10). For a
better clarity, this is done in the hypothesis that failure
by crushing occurs at the central crack (α0 = 1.0), but
the model is not restricted to this situation.
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Figure 5: Influence of NC in nondimensional shear as
function of the crack depth for λ1=2 and ζ=0.1; (a)
NP =0.5; (b) NP =2.5.

In Fig. 5a the curve showing a discontinuity at the
reinforcement position (ξ = 0.1) represents the nondi-
mensional shear of crack propagation, ṼF , for a ver-
tical crack at the midspan (α0 = 1.0). The other fam-
ily of curves represent the shear of crushing failure,
ṼC , for different values of NC , Eqs. (16) and (17).
As appears from Fig. 5a, if NC is less than 2 (see
the two lowest curves), the RC beam exhibits an un-
stable behaviour, and the fracture process cannot oc-
cur because the shear necessary for crushing is less
than the shear necessary to the cracking process. For
higher values of NC the beam exhibits first yielding
(ξ ' 0.5), and then crushing when the curves with
varying NC intersect the thick curve of the load vs.
crack depth diagram. In this example it is therefore
useless to increase the concrete strength above say



NC ' 5 as yielding will always precede crushing and
the failure mode is flexural.

In Fig. 5b the beam brittleness number NP is varied
from 0.5 to 2.5 with respect to Fig. 5a. For values of
NC smaller that 2 the beam presents the same unsta-
ble behaviour of the previous example. In contrast, for
NC higher than 4, the crushing failure occurs before
yielding. As NC is increased, the crushing collapse
progressively approaches the yielding point. Only for
NC = 20 the yielding precedes crushing failure, as
the curve for NC = 20 intersects the thick curve of
the cracking process only after yielding. Therefore, a
variation in the brittleness number NC can change the
collapse mechanism from yielding to concrete crush-
ing and viceversa.

6 TRANSITION BETWEEN FAILURES MODES
The proposed model covers the three fundamental
failure mechanisms of RC beams: steel yielding (flex-
ural), diagonal tension (shear) and concrete crushing.
As shown in the following, the transition between the
aforementioned mechanisms is ruled by the nondi-
mensional model parameters NP , NC and λl. For
the sake of clarity, first the transition from flexural
to shear failure is analysed, then the transition from
shear to crushing failure.
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Figure 6: Transition from flexural to diagonal ten-
sion failure in RC beams as function of the govern-
ing nondimensional parameter NP ; (a) NP =0.2; (b)
NP =0.3; (c) NP =0.4; (d) NP =1.0.

Figure 6 shows four ṼF – ξ curves obtained by in-
creasing the brittleness number NP from 0.2 to 1.0
and keeping constant all the remaining parameters
(λl = 2.5, ζ = 0.1, µ = 6). A sketch illustrating the
crack trajectories at failure is reported for each beam
model.

In Figure 6a the model response for a brittleness
number NP = 0.2 is shown. When the nondimen-
sional shear force reaches a value of 0.14 the flexu-
ral crack (α0 = 1.00) begins its stable growth. As the
load is increased, some other neighboring cracks de-
velop with a stable growth. The more marked lines
in the plot represent the growing cracks. When the
nondimensional shear force is equal to 0.18 the steel
yields at the flexural crack. We assume that this value
of the nondimensional shear force represents the flex-
ural failure load. Thus the beam modeled in Figure
6a shows a flexural failure due to the yielding of the
steel at the midspan crack. In the same way, when
the brittleness number is increased to 0.3, the beam
collapses by flexural failure at the midspan crack, al-
though an increment in nondimensional shear force
from 0.18 to 0.25 is observed. Comparing the crack
pattern sketches at failure, we observe that the incre-
ment in the nondimensional shear also allows for new
neighboring cracks to develop through the reinforced
concrete element.

If the brittleness number is increased to 0.4, see
Figure 6c, initially the cracking process is similar to
the previous cases. Nevertheless, when the nondimen-
sional shear force reaches the value 0.33, flexural and
diagonal tension failure occur at the same time. In
fact, as pointed out in Section 4, diagonal tension
(shear) failure occurs when a shear crack develops
an instability process after a stable crack growth. For
higher values of the brittleness number flexural fail-
ure needs a higher nondimensional shear than diag-
onal tension failure, as illustrated in Fig. 6d, where
the brittleness number is set to 1.0: the load required
to provoke flexural collapse for the crack situated at
midspan is 0.8 while the load to provoke diagonal ten-
sion failure is 0.33 for the crack in α0 = 0.6.

Therefore, for low values of NP , cracks at midspan
(flexural cracks) need lower nondimensional shear
force to provoke flexural failure than shear cracks sit-
uated along the span to develop diagonal shear failure.
As NP is increased, the opposite case occurs: cracks
along the span need lower nondimensional shear force
to provoke beam collapse than the crack at midspan.
Thus there is a point where the transition between
these types of failure takes place.

Figure 7 shows a conceptual sketch of all the fail-
ure mode transitions in reinforced concrete elements
without stirrups predicted by the model by varying the
nondimensional parameters.

Based on the definition of the brittleness number
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Figure 7: The global conceptual scheme illustrating failure mode transitions.

NP , an increase in NP can be read as:

• an increase in the reinforcement area, transition
from (d) to (e);

• a decrease in the scale with constant reinforce-
ment area, transition from (a) to (e);

• an increase in the scale with a constant reinforce-
ment percentage, transition from (g) to (e).

When a crushing failure is considered, the behavior
of the RC element is controlled by the three nondi-
mensional parameters NP , NC and λl. As defined in
Section 3, crushing failure occurs when the crush-
ing vs. shear plot intersects the crack propagation vs.
shear plot.

To simplify the explanation of the transition and
for reasons of space in the present paper, a direct
transition from flexural to crushing failure is illus-
trated, although intermediate shear failure transition
can be demonstrated to exist as reported in the gen-
eral scheme of Fig. 7.

In Fig. 8a the transition process is shown when NP

is varied and the rest of parameters remains constant.
The nondimensional shear ṼF at yielding increases as
NP increases. At the same time, the shear for crushing
failure increases, although in a smoother way. Thus
the transition from flexural to crushing failure appears
clearly as shown in Fig. 8b, where we can read the
brittleness number in the abscissas against the nondi-
mensional shear at failure. Two different areas are de-
limitated. For low values of the brittleness number
failure is due to steel yielding (flexure). For NP ' 0.3,
the transition takes place and then shear for crush-
ing failure needs a lower value compared to shear for
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Figure 8: Transition from flexural to crushing fail-
ure in RC beams as function of governing nondimen-
sional parameters, increment of NP ; (a) ṼF -ξ curves;
(b) ṼF -NP curve.

flexural failure, i.e. crushing precedes yielding. Phys-
ically this transition appears when the reinforcement
ratio ρ is increased and the rest of parameters remains
constant: we have the transition from (d) to (f) in the
scheme of Fig. 7.

According to the scheme, another transition can be
demonstrated when the beam is scaled keeping con-
stant the reinforcement ratio ρ. Looking at the defini-
tions of NP and NC , the condition of an increment in
the scale can be expressed keeping constant the ratio
NC

NP
.

Finally, the transition by size effect can be demon-
strated in the hypothesis that the reinforcement area
As is constant. This condition can be expressed by
considering the ratio NC

NP
as a linear function of the

scaled beam depth h
h0

, where h0 is a reference depth.
The conceptual scheme in Fig. 7 summarizes the

failure transitions predicted by the model, from flexu-
ral crushing failure.



The transitions to crushing can take place as:

• an increase in the reinforcement area, transition
from (d) to (e) and finally (f);

• an increase in the scale with constant reinforce-
ment percentage, transition from (g) to (e) and
finally (c);

• a decrease in the scale with constant reinforce-
ment area, transition from (a) to (e) and finally
(i).

In some cases, depending on material and geomet-
rical properties, the intermediate transition through
(e) may be skipped and a direct transition from yield-
ing to crushing can be observed.

7 CONCLUSIONS
This paper presents an extension of the bridged
crack model to analyse flexural-shear-crushing fail-
ure modes in R.C. beams. The failure mode transi-
tions have been illustrated by varying the controlling
nondimensional parameters: the brittleness numbers
NP and NC and the slenderness λl. The study demon-
strates that the diagonal tension failure is a conse-
quence of unstable crack propagation. The shear fail-
ure initiation point and collapse load are determined
analytically by the present model without using em-
pirical parameters.

The model gives rational explanation to the transi-
tions between all the failure modes and size effects in
failure transitions are shown by varying the brittleness
numbers, NP and NC .
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