
1 INTRODUCTION 

The size-scale effect on structural strength is a very 
important topic in engineering design. Dealing spe-
cifically with concrete structures, it was seen that 
tensile strength decreases with the structural size, 
whereas fracture energy increases. In recent years, 
the scientific community dedicated significant ef-
forts in order to gain a precise description of this 
phenomenon and to highlight the physical mecha-
nisms that lie behind it. Three different approaches 
have been proposed and analyzed at least, i.e. the 
energetical, the statistical and the fractal one. 

The fractal approach, originally proposed by 
Carpinteri (1994a,b), has been matter of intense de-
bate, particularly in the papers by Bažant (1995, 
1997b, 1998, 2000) and Bažant & Yavari (2005) 
and, more recently, by Saouma & Fava (2006), who 
question its validity and even argue that it lacks 
sound physical and mathematical basis. In this long 
standing controversy about the interpretation of scal-
ing laws on material strength (Carpinteri & Pugno, 
2005), the fractal approach has been counterposed to 
the energetical approach at first and to the so-called 
energetical-statistical one only more recently. 

Aim of this paper is to review and reject most of 
the criticisms against the fractal interpretation of the 
size effects, by clarifying some aspects that have 
been misunderstood and confused by the above cited 
Authors. In particular, we will analyze the crucial 
critiques contained in the Appendix of the paper by 
Bažant & Yavari (2005), who argue that “the prop-
erty that the left-size asymptote of the MFSL in a bi-
logarithmic plot should have the slope –1/2 must be 

considered as unproven by the fractal argument in 
[Carpinteri (1994b)]”. We will critically review 
these criticisms, showing how they also contain 
some flaws and mistakes. More in detail, by analyz-
ing a fractal distribution of micro-cracks in the 
framework of Extreme Value theory (EVT), we will 
show how this distribution naturally provides the 
slope –1/2, which corresponds to the LEFM size-
scale effect. 

Moreover, we will show that it is wrong to set the 
fractal approach to size-scale effects against the sta-
tistical one, since they are deeply connected, as 
shown in several papers (Carpinteri & Cornetti 
2002, Carpinteri et al. 2004, 2005a,b). Eventually, 
the cause for the lack of specifications regarding the 
size scale effects in the design codes will be criti-
cally analyzed. 

2 SIZE-SCALE FORMULAE 

In the last two decades, several formulae have been 
proposed for interpreting the size-scale effects on 
concrete strength. Among these, two scaling laws 
have found broad application. The first one is the so-
called SEL (Size Effect Law), originally proposed 
by Bažant (1984), in which LEFM and limit analysis 
concepts were joined together yielding:    
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where ft is the plastic limit stress, B and b0 are two 
constants to be determined in each case by fitting 
experimental data.  

In the original formulation, the SEL was obtained 
for the three point bending geometry from energy re-
lease concepts, by introducing some simple geomet-
rical hypotheses about the crack band and the stress 
relief zone. Later on, the same law was obtained by 
means of a much more general asymptotic analysis 
of the energy release (Bažant, 1997a). 

A second successful size-effect formula is the so-
called MFSL (Multi-Fractal Scaling Law, Carpinteri, 
1994a,b), originally proposed in 1992 on the basis of 
fractal argumentations and in the framework of Re-
normalization Group Theory: 
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where the asymptotic value of the nominal strength 
ft, corresponding to the lowest nominal tensile 
strength, is reached only in the limit of infinite sizes. 
The transition between the LEFM asymptote at the 
smaller scales (fractal regime) and the horizontal as-
ymptote (homogeneous regime) is controlled by the 
characteristic length lch, representing the variable in-
fluence of disorder. Both ft and lch have to be deter-
mined in each case by fitting emperimental data.  

Both laws, as evidenced from the large available 
Literature on the subject (see e.g. the Report by 
Carpinteri et al., 1995), have been confirmed by re-
sults of several experimental tests in bending, ten-
sion and compression. A clearer picture emerged 
only recently (Carpinteri et al. 2002); it is now defi-
nitely clear that, when a strong energy-driven frac-
ture process is activated, as in the presence of impor-
tant notches  in the structure, a curvature with upper 
convexity should be considered in the bi-log strength 
vs size diagram. This is exactly the case when 
Bažant’s original Size Effect Law (SEL) applies. On 
the contrary, when the role of microstructural disor-
der and of self-similar features (i.e., fractality) 
dominate the damage and fracturing processes, the 
MFSL permits to interpolate experimental data more 
realistically and closer than SEL. In other words, the 
experimental tests in the literature strongly support 
the MFSL when large notches are absent. 

At the beginning this fact was not acknowledged 
and since 1995 Bažant (1995) simply tried to oppose 
his 1984 SEL formula to the MFSL by Carpinteri. 
His opposition to eq. (2) exploited the same tactics 
followed to demonstrate that Weibull-type size ef-
fect is not applicable to concrete structures and con-
cretized in a strong opposition to the existence of a 
finite asymptotic strength for large structural sizes, 
which was in contradiction with his formula. 

Only later Bažant (1997a) introduced the so-
called “Universal SEL”, in which a horizontal as-
ymptote in the limit of infinite sizes is present and, 

more importantly, the same MFSL upwards curva-
ture may be obtained under certain values of the pa-
rameters, if the specimen is unnotched.  

Nevertheless, his attempts to discredit the work 
by Carpinteri and co-workers and the MFSL contin-
ued (see e.g. Bažant, 1997b, 2000 and Bažant & 
Novák, 2000) up to the recent paper by Bažant & 
Yavari (2005), in which several criticisms are raised 
against the derivation of the MultiFractal Scaling 
Law presented by Carpinteri (1994b); they question 
its validity and even argue that it lacks sound physi-
cal and mathematical basis. Quoting from their pa-
per (page 13, item 3): “The ‘MFSL’ was based on a 
series of hypotheses but does not follow from these 
hypotheses by a valid mathematical procedure.”  

3 THE SLOPE OF THE MFSL ASYMPTOTE AT 
THE SMALLER SCALES 

In particular, Bažant & Yavari (2005) aim at show-
ing that the scaling law for strength at the smaller 
scales, characterized by the slope –1/2 in the bi-
logarithmic plot, does not follow from the statistical 
treatment presented in Carpinteri (1994b). They in-
sist on this point throughout their whole paper; quot-
ing again from: 
− Page 13, item 4: “the value –1/2 is an unproven 

conjecture which does not follow from the fractal 
hypothesis”; 

− Page 26, item 1: “The exponent –1/2 attributed to 
the small-size asymptotic scaling law is supposed 
to be solely a consequence of a peculiar situation 
called ‘the extreme disorder’.”; 

− Page 26: “the property that the left-size asymptote 
of the MFSL in a bi-logarithmic plot should have 
the slope –1/2 must be considered as unproven by 
the fractal argument. [...] If only the fractal view-
point is considered, this property is merely an 
empirical assumption”. 

In this section we will reject these criticisms against 
the fractal interpretation of the size effects, by revis-
iting the statistical treatment presented by Carpitneri 
(1994b), clarifying some aspects that have been 
misunderstood by the above cited Authors and 
showing how these criticisms also contain some 
flaws and mistakes. In particular, we will reject the 
crucial critique against the slope –1/2 of the left-
hand asymptote of the MFSL. This slope, as will be 
shown, not only follows from the fractal-statistical 
treatment, but also is explained in the framework of 
the Fractal Cohesive Crack Model (Carpinteri et al., 
2002), that has been confirmed very convincingly by 
experiments (Carpinteri et al., 2002, 2003). 

 



3.1 The Fractal Cohesive Crack Model  
In this framework, indicating by dσ, dε and dG the 
fractional exponents for strength, strain and fracture 
energy, respectively, it has been shown that the fol-
lowing equation should hold: 

1d d dσ ε+ + =G  (3) 

At the smaller scales, the collapse is governed by the 
canonical critical strain εc and continuum damage 
mechanics holds. In this case the damage is diffused 
(with uniform strain in the bulk) and one obtains 
dε=0. Thus, the previous relation becomes dσ+dG=1. 
On the other hand, the maximum value for dG is 1/2, 
since this value implies a fractal dimension of the 
dissipation domain ΔG = 2.5, which would corre-
spond to the Brownian crack surface. As a conse-
quence, dσ = 1/2 is the limit value at the smaller 
scales. 

3.2 The fractal-statistical explanation 
In this section we will revisit the statistical treatment 
presented by Carpinteri (1994b), which provides a 
different explanation for the slope of the left-hand 
asymptote of the MFSL, and which has been criti-
cized by Bažant & Yavari (2005). Before revisiting 
this explanation of the MFSL asymptotic slope, let 
us start from the critiques.   

At page 26 of their paper, Bažant & Yavari affirm 
that “defects of maximum size amax cannot have the 
same probability distribution of a as the ensemble of 
all defects, but could have only one of the three pos-
sible extreme value distributions (Fréchet, Weibull 
or Gumbel) of which only the Weibull distribution 
would be realistic here because a non-negative 
threshold on a exists”.  

The second part of the statement is definitely 
wrong: the existence of a (presumably upper) “non-
negative threshold on a” is merely speculative and, 
in any case, unproven. Moreover, the limit distribu-
tion for an heavy tailed distribution, such as Pareto, 
or Cauchy, is not the Weibull, as erroneously stated, 
but the Fréchet one (this result was already used by 
Freudenthal (1968) almost 40 years ago).  

This is not the crucial point, however: in the first 
part of the statement, Bažant & Yavari (2005) affirm 
that amax cannot have a power-law (fractal) distribu-
tion and, consequently, that the assumption (amax 
/b)=const. (b being the structural size) is unjustified. 
This is the key point, since from this hypothesis fol-
lows the –1/2 (LEFM) slope of the left-hand asymp-
tote.  

However, this critique will be rejected: although 
formally correct, the cited statement misses the fun-
damental nature of the extremal behaviour of the de-
fect size a. If we consider the probability distribution 
of self-similarity:  

1( ) N

Cp a
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with exponent N = 3, we may demonstrate that 
(amax/b) is constant on average. This result can be 
obtained rigorously in the framework of EVT, by as-
suming the above distribution of defect size for the 
ensemble of all defects (as already done by Carpin-
teri, 1994b). 

To show this, and reject the critique by Bažant & 
Yavari, we need to introduce some fundamentals of 
EVT. Let us suppose we have a sequence of random 
variables X1, X2,… who are i.i.d., i.e. independent 
and identically distributed. Let P(x) be their com-
mon cumulative distribution function: 

( ) { }Pr iP x X x= ≤  (5) 

Also let Mn = max(X1, … , Xn) be the n-th sample 
maximum of the process. Then, it is obvious that: 

{ } ( )Pr
n

nM x P x⎡ ⎤≤ = ⎣ ⎦  (6) 

This results is trivial, since for each value x such that 
P(x) < 1, we have Pr{Mn ≤ x}→ 0 for n → ∞ . For 
non-trivial limit results, it is necessary to find two 
sequences of real numbers an > 0, bn, such that: 
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The Three Types Theorem (Fischer & Tippett, 1928) 
affirms that, if H exists, it should be one of the three 
extreme value distributions (Fréchet, Weibull or 
Gumbel). These three distributions may be written in 
a single form, which is usually referred to as the 
Generalised Extreme Value distribution (GEV): 
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where ξ is a shape parameter, μ a location parame-
ter, σ > 0 is a scale parameter and 1+ξ(x–μ)/σ > 0. 
The sign and value of ξ identifies the distribution 
type: ξ>0 corresponds to the Fréchet distribution, 
ξ<0 to the Weibull distribution, whilst the limit ξ→0 
corresponds to the Gumbel one (Gumbel, 1958). 

Let us consider, as done by Carpinteri (1994b), 
that the defects are distributed according to a prob-
ability density function p(a) characterized by a frac-
tal tail, such as that of Eq. (4). The corresponding 
cumulative distribution function P(a) is thus:  

NCaaP −−= 1)(  (9) 

where C>0 and N>0 are constants. This form corre-
sponds to a Pareto-type tail, sometimes referred to as 
a Cauchy-type (Freudenthal, 1968). In order to per-



form the renormalization of eq. (7), we choose 
( )1 N

na nC=  and bn = 0. By doing so, we obtain: 

( ) ( )exp
n N

n nP a x b x−⎡ ⎤+ =→ −⎣ ⎦  (10) 

Comparing this equation with eq. (8), it is clear that 
the limit distribution for amax is not the Weibull, as 
erroneously stated by Bažant & Yavari (2005), but 
the Fréchet one.  

If we now assume that interaction between the 
flaws is negligible (weakest link hypothesis, 
Weibull, 1939), the strength of a solid made of the 
material is determined by the size of the largest flaw. 
The relation between the strength of the material and 
the flaw size may be defined by the LEFM equation 
(Griffith, 1921): 

ka =σ  (11) 
k being a constant value, which depends on the val-
ues of the elastic constants: E and ν, on the fracture 
toughness KIC and on the specimen geometry. If we 
consider the cumulative probability Pσ(σ) of 
strength and that of maximum flaw size Pamax(a), 
they are in relation through the following equality 
chain: 
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As already shown, the cumulative distribution for 
amax is of the Fréchet type: 

( ) ( )
max

exp N
aP a a u −⎡ ⎤= −⎣ ⎦   (13) 

and by substituting the latter relation into eq. (12), 
we obtain: 

( ) ( )[ ]NF 2
0exp1 σσσσ −−=   (14) 

where σ0 = u/k2. Thus, the distribution of strength σ 
is a Weibull one, and the Weibull modulus is in rela-
tion with the exponent N of the flaw distribution:    
m = 2N (Freudenthal, 1968). 

So far, Bažant is right when he claims that the 
demonstration in Carpinteri (1994b) is not rigorous, 
since the passage from pa(a) to pamax(a) (passage 
from eq. (34) to eq. (35)) is formally not correct, but 
he is wrong when he pretends that this imprecision 
invalidates the conclusions about the small-size as-
ymptotic scaling law and particularly about the ex-
ponent –1/2. Bažant, by observing that pamax(a) can-
not be a power-law (Pareto) distribution, concludes 
that the initial hypothesis (amax/b) = const, which is 
the cause for the slope –1/2, is unjustified. 

On the contrary, it could be shown that this hy-
pothesis is true in a mean sense (provided that the 
probability density function pa(a) of the ensemble of 
all defects is Pareto, see eq. (4)) and this conclusion 

may be shown to be valid in a strictly and rigorous 
way, by recurring again to Extreme Value Theory, 
more precisely to the analysis of exceedances over 
thresholds. Let us consider the distribution of the 
stochastic variable X conditionally, on exceeding 
some high threshold z, so that we may define an-
other random variable Y = X – z: 
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In the limit for z→ z*= sup{x: P(x)<1}, the intensity 
Pz(y) may converge to a limit: 

( ) ( ), ,zP y G y σ ε=   (16) 

where G is the Generalized Pareto Distribution 
(GPD):  
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with 1+ξy/σ >0. The GPD is closely related to the 
GEV distribution (see eq. (8)), as shown by 
Pickands (1975). He demonstrated that, for any 
given cumulative distribution function P, a GPD ap-
proximation exists if and only if the limit of eq. (8) 
exists. In that case, if H is written in the GEV form 
of eq. (8), then the shape parameter ξ is the same as 
the corresponding parameter in eq. (17). 

The generalized Pareto distribution is often used 
to model the tail of any given distribution. It has 
three basic forms (corresponding to the three forms 
of the GEV distribution). Distributions whose tails 
decrease as a polynomial, such as the Pareto, lead to 
a positive shape parameter, ξ>0. Distributions whose 
tails are finite, such as the beta, lead to a negative 
shape parameter ξ<0, and distributions whose tails 
decrease exponentially, such as the normal, lead to a 
generalized Pareto shape parameter ξ→0. 

Thus, the Pareto distribution assumed for the de-
fect size, described by eq. (9), is a particular case of 
the GPD, and obviously the limit for its exceedances 
is given by a distribution of the same form. To prove 
this, consider the conditional distribution Pz(y) (see 
eq. (16)) for some ky, with k>0 constant, and with P 
defined by eq. (9): 

( ) ( )N N

z N

Cz C z kyP ky
Cz

− −

−

− +
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Now, if we assume k k z∗= , the result is straight-
forward: 

( ) 1 (1 ) N
zP ky k y∗ −= − +   (19) 

Thus, let us now reason in terms of the ex-
ceedance distributions, rather than in terms of the 
probability density functions. As a first step in our 
reasoning, let us consider that, in a body of charac-



teristic linear size b, a threshold a  can be defined, 
such that, on average, one defect only (i.e. the larg-
est) exceeds it. Let the material be uniform, so that 
we may define ρ as the mean (volumetric) density of 
defects. With this notation we obtain: 

{ }
2

3

0 0

1Pr sin d d 1
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a a b
π π

≥ ρ θ θ φ =
π ∫ ∫   (20) 

φ and θ being the longitude and the latitude of the 
defect orientation. The factor 1/4π pertains to all im-
perfections, since all orientations are equally prob-
able. As already stated, one defect only is expected 
to exceed the threshold a  in a body of linear size b; 
its dimension, however, is still random, since we 
only know that this defect (which is obviously the 
largest defect in the body) is larger than the thresh-
old: amax ≥ a . 

If now a geometrical similar body of characteristic 
size kb is considered, we might want to evaluate the 
number of defects exceeding the size ak ; then we 
can impose the condition that this number is equal to 
one: one defect only exceeds the threshold ak : 
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3
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a ka kb
π π

≥ ρ θ θ φ =
π ∫ ∫   (21) 

Equating eqs. (20) and (21), the following relation is 
obtained: 

{ } { } 3PrPr kakaaa ≥=≥   (22) 

It is easy to see that the cumulative probability Pa(a) 
of eq. (9) satisfies this condition, if N = 3. More 
generally, the conditional probability for a exceed-
ing some high threshold a  is of the form of eq. (19) 
with exponent N = 3. Let us observe how, in this 
case, the distribution of self-similiarity has been ob-
tained not from the hypothesis (amax/b) = const, but 
from the equality of the number of defects exceeding 
a given size a , so that a /b is constant. Note also the 
difference with the treatment in Carpinteri (1994b), 
where the distribution of self-similarity is character-
ized by the exponent N = 2.  

Now, in order to conclude the demonstration that 
the slope –1/2 still holds, we need to evaluate how 
these defects behave. It is easy to show that they 
have a mean value proportional to the threshold a : 

( )
1

NE a a a a
N

≥ ∝
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This is, on average, the value of the maximum defect 
size amax; therefore, we can conclude that (amax/b)= 
const, but on average only (otherwise, the probabil-
ity density of amax should be Pareto and this is not 
possible, since it must be Fréchet, as previously 
shown). 

Summarizing, the statement by Bažant & Yavari 
(2005) that the hypothesis (amax/b) = const is not jus-
tified in the framework of EVT, so that the slope –

1/2 for the size-scale asymptote is unproven, misses 
the fundamental nature of the extremal behaviour of 
the defect size a if a fractal distribution is consid-
ered. 

3.3 Monte Carlo numerical simulations 
The result proved in the previous section may be 
checked numerically by performing Monte Carlo 
numerical simulations. Let us consider a homogene-
ous material, characterized by a constant volumetric 
defect density ρ, whose defects are distributed ac-
cording to the self-similarity distribution of eq. (4) 
with N = 3. For any given scale b, the mean number 
of defects inside a cube of side b is equal to n = ρb3. 
By generating virtual samples with n defects sam-
pled from the self-similarity distribution, we may 
evaluate how the size of the maximum defect amax 
behaves. For the numerical experiments, the chosen 
scale range is 1:256 (the largest scale corresponds to 
224 defects); for each size, 1000 specimens are gen-
erated.  

The mean value of amax is plotted against the size 
b in Figure 1 in the case with N=3; a0 and b0 are ref-
erence quantities for normalization. As could be 
seen in the bi-logarithmic plot, a power-law emerges 
with slope approximately equal to 1. This result sup-
ports the conclusion of the previous section, i.e. 
(amax/b) = const, so that the small-size asymptote of 
the MFSL is characterized by the LEFM exponent –
1/2. 

 

 
Figure 1. Numerical assessment of the power-law relationship 
between amax and b in the case of N=3. The slope very close to 
1 of the best-fitting power law confirms that, on average, 
(amax/b) = const.  

 
 
Accordingly, the critiques in the Appendix of the 

paper by Bažant & Yavari (2005) are rejected. It is 
not true that “the maximum size of defects is simply 
assumed to scale up with the body size b”; as shown 
before, this assumption is well justified both theo-
retically and numerically. Even the critique about 
the fact that in Carpinteri (1994b) “the maximum de-
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fect size amax is treated as nonrandom when the scal-
ing is considered, although in reality it should more 
properly be considered as a randomly distributed” 
can be rejected. Indeed amax is random, but on aver-
age it may be assumed to scale up with the body 
size, as already pinpointed. 

3.4 Further minor remarks 
The above results give a strong and, in our opinion, 
definitive support to the fractal-statistical explana-
tion of the left-hand asymptote slope of the MFSL. 
Nevertheless, some further minor remarks have to be 
added. The first remark concerns the scaling of amax 
when 3N ≠ . In this case, as stated by Carpinteri 
(1994b), the scaling of the maximum defect size for 
geometrical similar bodies in a scale ratio k>1 may 
be written as:  

( ) ( )max maxa kb k a bβ=   (24) 

The value of β, however, is not β=3/(N+1), but it 
must be β=3/N, as could be easily shown. If we con-
sider that maxa a∝  (see eq. (23)), and introduce the 
scaling law of eq. (24) into eq. (22) we obtain:  

[ ] 3
max max( ) ( )

NNa b k a b kβ −− ⎡ ⎤= ⎣ ⎦   (25) 

from which follows that:  

3 Nβ =   (26) 

Once again, this result has been confirmed by Monte 
Carlo numerical simulations, as could be seen in 
Figure 2. The numerical results for β are clearly in 
good agreement with the theoretical values given by 
Eq. (26). 
A second remark concerns the fact that the self-
similarity distribution (with N=3) corresponds to the 
maximum disorder, as stated by Carpinteri (1994b). 
Thus, the slope –1/2 of the left-hand asymptote is a 
theoretical upper bound, provided by three concur-
rent conditions (Carpinteri, 1994b): 
− linear elastic material; 
− Griffith cracks (singularity of order –1/2); 
− maximum disorder (N=3). 

To show this, the same demonstration already 
presented in Carpinteri (1994b) may be followed. 
Rewriting Eq. (24) with the correct value of β pro-
vides: 

3
max max( ) ( )Na kb k a b=   (27) 

whereas the characteristic size of the body increases 
linearly with k:  

max ( )a bkb k
ξ

=   (28) 

The maximum defect is larger than the body itself, 
which is clearly meaningless, for max ( )a kb kb≥ , 
from which, considering Eqs. (27) and (28), follows: 

3

1
N

Nk ξ
−

≥ >   (29) 

It is possible therefore to conclude that N=3 (self-
similarity distribution) is the minimum value, corre-
sponding to the maximum disorder. Once again, the 
conclusions contained in Carpinteri (1994b) are pre-
served, with a small correction: N=3 (and not N=2) 
corresponds to the self-similarity distribution.  

 

 
Figure 2. Scaling exponent β as a function of N. Results from 
Monte Carlo numerical simulations confirming Eq. (26) 

4 SIZE EFFECTS AND THE DESIGN CODES 

Until the end of the 1980s, no size effect was taken 
into account in concrete design codes. A possible 
reason for this was probably, as quoted by Bažant et 
al. (2004), that “whenever a size effect was detected 
in tests, it was automatically assumed to be statisti-
cal, and thus its study was supposed to belong to 
statisticians”.  

More recently, however, Bažant (2002) attributed 
the lack of size-effect specifications in the design 
codes to “the variety of formulae and the underlying 
(or absent) concepts”. Even more explicit are 
Saouma & Fava (2006), who state that “the duality 
of contradictory models [SEL and MFLS] is becom-
ing an impediment to modernization of the ACI 
code”. We cannot agree with such opinions. The 
large variety of formulae and the underlying con-
cepts simply show that this field is far from having 
come to a complete definition of the physical phe-
nomena which subtend all the size-scale effects.  

In addition, we must mention that code-making 
committees would probably never include too com-
plicate formulae or theories, which pretend to be 
universal, into code of practice formulae. On the 
contrary, they are usually looking for simple effec-
tive formulae with a clear and limited field of use, 
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most often restricted to a single application or ge-
ometry. That is, in our opinion, the reason why the 
MFSL, which is a two-parameter formula, has been 
adopted for the shear strength in reinforced concrete 
by the CEB (CEB-FIB Model Code, 1991), whereas 
the “Universal SEL”, which is a six-parameter for-
mula (see Eq. (46) in Bažant, 1997a), has not. 

5 CONCLUSIONS 

In this paper we reconsidered the fractal-statistical 
treatment by Carpinteri (1994b), which has been 
criticized by Bažant in several papers. As shown, 
this treatment should be considered valid: the expo-
nent –1/2 attributed to the left-hand asymptote of the 
MFSL is definitely not an assumption, or “solely a  
consequence of a peculiar situation called ‘the ex-
treme disorder’”. Rather, it is the direct consequence 
of LEFM when a fractal distribution of defects (with 
power-law tail) describes the flaw distribution inside 
the tested material. In addition, this result is con-
firmed by the Fractal Cohesive Crack Model and 
strengthened by Monte Carlo numerical simulations. 
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