
1 INTRODUCTION 

Tensile creep can be an important issue for the be-
haviour of concrete structures. For instance, at early 
ages, stresses generated by autogeneous shrinkage 
and thermal dilation, in massive structures or in re-
strained elements (reparatio, lifts …) are relaxed by 
creep in tension (Ostergaard et al. 2001). Moreover, 
one of the probable reasons behind the collapse of 
the 2E terminal in the international airport of Roissy 
(France) is the tertiary creep in tension. Further-
more, in case of accident in nuclear power plants, 
the internal pressure inside the vessel reaches about 
0,5 MPa. This can induce vertical and ortho-radial 
tensile stresses in internal containment vessels (biax-
ialy pre-stressed), if creep strain during the service-
life of the structure has been underestimated or in 
particular area (access airlock …). These stresses 
can be very close to the tensile strength, and cause 
an initiation of cracking or/and a propagation of ex-
isting cracks, and therefore induce an increase of 
global permeability and consequently the leakage of 
radioactive elements into the environment. 

It is still a difficult task to assess the creep behav-
iour of concrete, since the associated mechanisms 
are not well known (Jennings and Xi 1992). More-
over, few experimental results and numerical models 
are available on tensile creep compared to compres-
sive creep. Especially, tensile creep of aged concrete 
has been less studied than the one of young concrete. 

When compressive stresses level becomes impor-
tant, we notice that the relation creep strain / stress 
become non linear (Roll 1964, Li 1994, Mazzotti 
and Savoia 2003). 

In previous studies, this feature can be modelled 
by several ways: 

- From damage theory (Li, 1994), the temporal 
variable can be introduced explicitly in the evolution 
law of mechanical damage (in term if rate of dam-
age). One of the shortcomings of this approach is 
that it is dissociated with linear viscoelastic creep 
strain; 

- According to Bažant and Xiang (1997) this non-
linearity is only apparent. The non linear creep does 
not exist, from their point of view. Non linearity is 
the result of micro-cracks growing during the time. 
They proposed a time-dependent generalization of 
the R-curve model (adaptation of LEFM which con-
siders the process zone as a point), in which the rate 
of crack growth is a function of the ratio of the stress 
intensity factor to the R-curve;  

- The non linear character can be supposed to be 
linked to the stress redistribution because of creep, 
and the non homogeneous damage distribution 
(Ožbolt and Reinhardt 2001). Indeed, cracking in 
concrete is heterogeneous in a specimen. It occurs in 
a localized area. The redistribution takes place be-
tween the most damaged areas and the less damaged 
areas. This hypothesis requires, in the modelling 
part, to take into account the initial defaults in the 
material which can corrupt the stress and strain dis-
tribution initially homogeneous. 

- Linear visco-elastic model can be extended by 
multiplying the creep compliance by a non linear 
function of the stress-state (Bažant and Prasannan, 
1989). This function is equal to one for low stress 
level; 
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- Coupling between creep and cracking can be 
modeled by combining a visco-elastic and a visco-
plastic model (Berthollet et al. 2002). Their model is 
built on Duvault-Lion approach in which they have 
integrated a generalized Maxwell model. It allows 
for reproducing linear visco-elastic creep, creep fail-
ure and rate effect on strength; 

- Mazzotti and Savoia (2003) proposed to model 
non linear creep strain by introducing a stress rate 
reduction factor as a function of damage index in the 
solidification model of Bažant and Prasannan 
(1989). Moreover, an effective strain is then defined 
for creep damage, replacing the equivalent strain for 
damage evaluation for instantaneous loading case. 
The effective strain is defined as the sum of instan-
taneous damaged elastic strain and a fraction of 
creep strain. Omar et al. (2003) also used a similar 
approach. 

Among these approaches, our model is based on 
the one proposed by Mazzotti and Savoia (2003). 
The elastic damage model proposed by Mazars 
(1984) has been modified in order to get finite frac-
ture energy. The mesh dependency problem is over-
come by the use of a characteristic length, related to 
the size of finite elements. Moreover, no stress fac-
tor is introduced. The obtained model allows for re-
trieving linear creep, non linear creep and partially 
rate effect on stress-strain curves. Furthermore, since 
all equations are defined analytically, no local itera-
tio is needed, rendering the calculations very fast. 

In this paper, we will consider only basic creep 
(i.e. no drying) of aged concrete (i.e. no ongoing hy-
dratio) without taking into account the effect of age 
at loading. 

2 MODELLING 

2.1 Basic creep model 
Many mechanisms for basic creep of concrete have 
been proposed in order to retrieve all the collected 
experimental evidences. Even no mechanism has 
been universally accepted yet, several models exist 
in the literature. 

Several models for basic creep are based on 
rheological elements (springs and dashpots). The 
most used elements are Kelvin-Voigt and Maxwell 
chains, which are combined in serial or/and parallel. 
Here, we used several Kelvin-Voigt chains (see Fig-
ure 1). We will show that the use of such elements 
gives straightforward formula for the computations 
of strain evolution, in contrary to Maxwell chains 
for instance, which need the use of an algorithm 
(such as the so called exponential algorithm pro-
posed by Bažant and Wu, 1974). However, such a 
model does not allow retrieving irreversible basic 
creep strains at unloading (which are about 60-70 % 
of total creep strain in the linear range). Fortunately, 

if only increasing stresses are concerned, a correct 
evolution of creep strain is predicted. 
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Figure 1. Kelvin-Voigt elements for the prediction of creep 
strains. 

 
Let us consider a Kelvin-Voigt unit i, the basic 

strain evolution is given by the following relation-
ship: 
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Where ( )tσ~  is the effective stress (See § 2.2), 
( )ti

bcε  is the elementary basic creep strain, i
bck  is the 

stiffness and i
bcη  is the viscosity of the Kelvin-Voigt 

unit i. 
The total basic creep strain is then obtained from 

the sum of all the elementary basic creep strain: 
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For variable stresses, the algorithm of the compu-
tation of basic creep strain is given in § 2.3. 

2.2 Damage model 
The damage variable is associated to the mechanical 
degradation process of concrete induced by the de-
velopment of microcracks. It is defined as the ratio 
between the area occupied by created micro-cracks, 
over the whole material area (see figure 6). 
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Figure 2. Definition of the damage variable. 

 
The mechanical behaviour of concrete is modelled 
by an isotropic elastic-damage model coupled with 
creep. The relationship between apparent stresses σ , 



effective stresses σ~ , damage D, elastic stiffness ten-
sor E0, elastic strains eε , basic creep strains bcε , to-
tal strains ε : 

( ) ( ) e0 DD εσσ ⋅−⋅=⋅−= 1~1 E  (3) 

D is linked to the equivalent tensile strain ε̂  
(Mazzotti and Savoia, 2003): 

++++
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where 
+xxε corresponds to the positive part of 

the strains and β is a material parameter which can 
be identified from non linear basic creep data. 
Therefore, damage will be affected also by basic 
creep strain. This will allow for retrieving non linear 
basic creep evolution for high stress levels. By tak-
ing β = 0, the initial formula proposed by Mazars is 
retrieved. 

The damage variable represents the effect of pro-
gressive microcracking, due to external mechanical 
loads, in term of degradation of the current Young’s 
modulus of the material. The evolution of the dam-
age variable in tension Dt and in compression Dc is 
an exponential form: 
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where Ax and Bx (x = t for tension and x = c for 
compression) are constant material parameters 
which controls the softening branch in the stress-
strain curve; κ0 is the tensile strain threshold. 

The damage variable is related to the compressive 
and tensile ones by the following relationship: 

( ) ttc DDD t αα +−= 1  (6) 

where αt is related to the tensile and compressive 
strain created by principal tensile and compressive 
stresses, εT_ii and εC_ii, respectively (Mazars 1984): 
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where H is the Heaviside function. 
The damage criterion is given by (Mazars 1984): 

0ˆ κε −=f  (8) 

Strain softening induces inherent mesh depend-
ency and produces failure without energy dissipation 
(Pijaudier-Cabot et al. 1987). In order to avoid such 
shortcomings, a characteristic length lc is introduced. 
This length is related to the mesh size (Rots 1988, 
Cervera and Chiumenti 2006) in order to dissipate 
the same amount of energy after mesh refinement, 
when strains localize in one row of finite elements. 

For the adopted model, the dissipated energy den-
sity gfx at failure in compression (x = c) and tension 
(x = t) is reads: 

( )
x
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where fc and ft are the strength in compression 
and tension, respectively. 

It is related to the fracture energy Gfx and the cha-
racteristic length lc: 
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2.3 Numerical algorithm 

The effective stresses are linearized, for each time 
step: 
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with [ ]1,n nt t t +∈ , 1n n nt t t+Δ = − , 1 1n n n+ +Δ = −% % %σ σ σ  
and where tn is the time at time-step number n; n%σ  is 
the effective stress vector at time step number n. 

Then, basic creep strains are calculated by solv-
ing the differential equation (1), using Eq. 11: 

1
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where n
bcε  is the basic creep strains vector at 

time-step number n; abc, bbc and cbc depend only 
upon material parameters, t and Δt: 
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where the characteristic time is defined by: 

i
bc

i
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Therefore, we only need to know the stresses and 
the creep strains at time step number n to calculate 
the creep strains at time-step number n+1 (the stor-
age of the stress history is not needed). In the case of 
linear visco-elastic strains, Eq. 12 and 13 are strictly 
equivalent to Boltzmann superposition principle 
(Benboudjema 2002). 



Eq. 12 is extended in 3D, by mean of a creep 
Poisson ratio, which has been taken equal to the 
elastic one in the numerical simulations: 

1
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The effective stresses increment 1n+Δ %σ  at the end 
of the time step number n is updated by the follow-
ing relationship: 
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Finally, if one makes use of the Eq. (14), the ef-
fective stresses vector increment 1n+Δ %σ  reads: 
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Then, the elastic strain, the equivalent tensile 
strain, the damage variable and finally the apparent 
stresses can be calculated (see § 2.2). 

The algorithm is summarized in Figure 3. 
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Figure 3. Local algorithm. 

 

Therefore, the numerical implantation is straight-
forward. Indeed, all involved equations are defined 
analytically and can be calculated without any local 
iteratio.  

3 NUMERICAL SIMULATIONS  

The model presented in § 2 has been implemented in 
cast3m finite element code. Some numerical simula-
tions are performed in order to validate the model in 
the case of uniform compressive stresses, as in bend-
ing. 

Experimental results of Roll (1964, quoted by 
Mazzotti and Savoia, 2001) have been used. The 
specimens have been loaded at an age of 28 days in 
a normal ambiance (20°C and 60 % relative humid-
ity). The compressive strength at 28 days is equal to 
42 MPa.  

3.1 Uniaxial behavior in compression and tension 
under quasi-static loading 

Typical stress-strain curves in tension and compres-
sion have been used (see Fig. 4 and Fig. 5.  
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Figure 4. Stress – strain relationship in compression (β = 0, Eq. 
4). 
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Figure 5. Stress – strain relationship in tension (β = 0, Eq. 4). 

 



Mechanical parameters are given in Tab. 1. 
 
Table 1. Values of the mechanical parameters used in the simu-
lations. 
  ac   bc   κ0    β   E [GPa] 
  12.5  920  1.1×10-4  0.24  30 
  at   bt 
  -0.52  9.21×103 

 
 

3.2 Creep behavior in compression 

3.2.1 Identification of material parameters 
Basic creep parameters have been identified from 
experimental results for a stress to strength ratio 
equal to 0.2 (still in the linear visco-elasticity do-
main). Three Kelvin-Voigt chains are sufficient to 
cover the whole time range (13 to 210 days). The 
Levenberg-Marquardt algorithm has been used 
(Press 1994). 

The identified parameters are given in Tab. 2. 
 
Table 2. Values of the identified creep parameters. 
 k1

bc [GPa]  k2
bc [GPa]  k3

bc [GPa] 
 40.2    24.5    53.4    
_____________________________________________ 
 τ1

bc [days]  τ2
bc [days]  τ3

bc [days] 
 300    43     1 
_____________________________________________ 
 

Next, delayed strains (defined as total strain mi-
nus initial strain) evolutions are simulated for differ-
ent stress to strength ratios, without taking into ac-
count creep/cracking interaction (β = 0, Eq. 4). 
Results are plotted in Fig. 6. 
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Figure 6. Delayed evolutions for different stress to strength ra-
tios without taking into account creep/cracking interaction (β = 
0, Eq. 4) – (experimental results from Roll, 1964). 

 
We observed that delayed strains are underesti-

mated, since creep/cracking interaction has not been 
taken into account. Experimental results stray from 
linear visco-elasticity for a stress to strength greater 
than 0.35. This has been previously simulated by 
Mazzotti and Savoia (2003). 

 

Parameter β (Eq. 4), which renders 
creep/cracking interaction phenomenon, is thus iden-
tified in order to retrieve experimental results. Using 
again Levenberg-Marquardt algorithm (Press 1994), 
the best obtained value is β = 0.24. This value is 
slightly lower than the ones proposed by Mazzotti 
and Savoia (2003). This is probably due to the fact 
that we do not use a stress rate reduction factor. 

A good agreement is obtained between experi-
mental and numerical results (see Fig. 7). Such a 
good agreement is obtained by Mazzotti and Savoia 
(2003). However, our calculations highlight that: 

• A stress rate reduction factor is not neces-
sary to retrieve non linear delayed strains; 

• The used algorithm is fast and easy to im-
plement, since no local iteratios are 
needed; 

• Modeling creep by Kelvin-Voigt elements 
allows for retrieving non linear creep 
strains. This is not consistent with previ-
ous calculations performed by Omar et al. 
(2003), which showed that only Maxwell 
elements are suitable. Nevertheless, one 
should be aware that the use of Kelvin-
Voigt elements does not allow for retriev-
ing irreversible creep strains at unloading. 
Therefore, the proposed model is rather 
relevant for constant and increasing 
stresses. (Torrenti and al. 2007) 
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Figure 7. Delayed strains evolutions for different stress to 
strength ratios (β = 0.24, Eq. 4) – (experimental results from 
Roll, 1964). 

3.2.2 Advanced analysis 
Creep strains are also predicted for higher stress to 
strength ratios (see Fig. 8). The evolution of damage 
with respect to time is also plotted in Fig. 9. 
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Figure 8. Delayed strains evolutions for different stress to 
strength ratios ( β = 0.24, Eq. 4). 

 
The model is therefore able to reproduce failure 

due to creep for very high stress to strength ratios 
within a finite time, which is in accordance to ex-
perimental results (e.g. Li, 1994).  

However, due to the use of an elastic damage 
model, increasing of apparent Poisson ratio cannot 
be reproduced, when cracking occurs: Poisson ratio 
remains constant with respect to time and equal to 
the elastic one. This is one of the shortcomings of 
the proposed approach. 
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Figure 9. Damage evolutions with respect to time for different 
stress to strength ratios (β = 0.24, Eq. 4). 

 
Delayed strain is defined as total strain minus ini-

tial strain. In fact, since damage evolves with respect 
to time, effective stresses increase. Therefore, elastic 
strain is also contributing to time dependent defor-
mation. For a stress to strength ratio equal to 0.8, 
both evolutions of “real” creep (Eq. 15) and elastic 
strain are given in Fig. 10.  

 
Delayed
strains

Creep
strains

Elastic
strains  

0

0,5

1

1,5

2

2,5

3

3,5

0 10 20 30

St
ra

in
s 

[*
10

3 ]

Time [days]

 
 
Figure 10. Contribution of “real” creep and elastic strains to 
delayed strains (β = 0.24, Eq. 4). 

3.3 Creep behavior in bending  
The same parameters as in §3.1 and §3.2 are used. It 
is also assumed that creep compliance is equal in 
compression and in tension, which is accordance 
with experimental evidences for mature concretes 
(Brooks and Neville, 1977). 

Numerical simulations are performed on 3 points 
bending beams (b = 10 cm, D = 10 cm, L = 35 cm, 
l = 30 cm, a0 = 1.5 cm). The geometry is reported on 
Figure 11. 
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Figure 11. Geometry of the 3 points bending beam. 

 
Numerical simulations are performed in stress 

plane conditions. The evolution of delayed deflec-
tion is plotted in Fig. 12 for different load to peak 
load ratios. It highlights that the proposed model is 
also suitable for the computations of non linear 
creep in bending (and therefore in tension). How-
ever, more simulations (and especially comparisons 
with experimental data) have to been carried out to 
validate the model. 
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Figure 12. Delayed deflection with respect to time for different 
load to peak load ratios. 

4 CONCLUSIONS 

An available elastic damage model has been modi-
fied in order to take into account linear and non lin-
ear creep. It has been achieved by solving analyti-
cally linear creep laws (based on Kelvin-Voigt 
elements) during a time step by assuming a linear 
evolution of effective stresses. Therefore, the storage 
of stress history is not needed. 

Coupling between cracking and creep is modeled 
by: 

• Creep of un-cracked material is assumed to 
remain visco-elastic. Therefore, creep 
strains are governed by effective stresses; 

• The Mazars criterion, expressed in term of 
strain, is modified by incorporating only a 
part of creep strain in the definition of ten-
sile equivalent strain. 

Therefore, no local algorithm is needed to com-
pute damage and stresses. The model is therefore 
easy to implement in a finite element code and the 
computations are very fast (conditioned by the finite 
element code efficiency). 

Numerical simulations have been performed in 
compression and bending. They show that: 

• The proposed model is able to reproduce 
non linear creep as failure of concrete for 
high stress levels; 

• Delayed strains are due not only to creep 
strains, but also to elastic strains since ef-
fective stresses are increasing during a 
creep test; 

However, the model is not adapted if strong de-
creasing effective stresses are expected. Moreover, 
the increase of effective Poisson ratio before failure 
cannot be predicted accurately. Furthermore, con-
crete behavior becomes anisotropic after cracking. 
Therefore, an anisotropic extension has to be per-
formed. More numerical simulations (especially a 

comparison with experimental data in bending) have 
to be performed. 
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