
1 INTRODUCTION 
 
The description of the behaviour of reinforced con-
crete members is complicated by the contemporane-
ous presence of different nonlinear contributions: 
crack opening in tension, concrete crushing in com-
pression and steel yielding or slippage. 

In most practical applications, the concrete con-
tribution in tension is totally neglected or just con-
sidered with a linear-elastic stress-strain law until 
the ultimate tensile strength is reached. The non-
linear concrete behaviour in compression is certainly 
not negligible. Many different laws may be used to 
model the concrete behaviour in compression: elas-
tic-perfectly plastic, parabolic-perfectly plastic, Sar-
gin’s parabola, etc. The most utilised constitutive 
laws for steel are the elastic-perfectly plastic or the 
elastic-hardening stress-strain relationships. Using 
these constitutive laws with a FEM program, it is 
possible to fully describe the behaviour of a rein-
forced concrete member, though it is difficult to 
catch the size-scale effects. The reason is that the 
above-mentioned constitutive laws consider only an 
energy dissipation over the volume in the nonlinear 
regime. 

On the other hand, the application of Fracture  
Mechanics concepts has been proved to be very ef-
fective for the analysis of size-scale effects. In par-
ticular, Carpinteri (1986) proposed a cohesive for-
mulation to explain the ductile-brittle transition in

unreinforced concrete beams under three-point 
bending test. This algorithm can also be used to de-
scribe the nonlinear behaviour of concrete in RC 
members. 

With regard to the behaviour of concrete in com-
pression, Hillerborg (1990) firstly introduced a 
model based on the concept of strain localization. 
According to his approach, when the ultimate com-
pressive strength is achieved, a strain localization 
takes place within a characteristic length propor-
tional to the width of the compressed zone. This 
model permits to study the problem of size effects, 
although the definition of the length over which the 
strain localization occurs is not clear.  

Furthermore, many experimental tests, see e.g. 
Van Vliet and Van Mier (1996), Carpinteri et al. 
(2005), Suzuki et al. (2006) put into evidence that a 
significant scale effect on dissipated energy density 
takes place. This parameter can be assumed as a ma-
terial constant only if it is defined as a crushing sur-
face energy. Hence, it emerges that the process of 
concrete crushing can be analysed with an approach 
similar to the cohesive model, which is valid for the 
tensile behaviour of concrete. In particular, we can 
define a linear-elastic stress-strain law, before 
achieving the compressive strength. Afterwards, a 
descending stress-displacement law can be intro-
duced, for the analysis of the nonlinear behaviour in 
compression. 
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ABSTRACT: The well-known Cohesive Crack Model describes strain localization with a softening stress 
variation in concrete members subjected to tension. An analogous behaviour is also observed in compression, 
when strain localization takes place in a damaged zone and the stress reaches the compressive strength with 
surface energy dissipation. In the present paper, we propose the new concept of Overlapping Crack Model, 
which is analogous to the cohesive one and permits to simulate material compenetration.  

The two aforementioned elementary models are merged into a more complex algorithm able to describe both 
cracking and crushing growths during loading processes in RC members. A numerical procedure based on elastic coef-
ficients is developed, taking into account the proposed constitutive laws in tension and compression. With this algo-
rithm, it is possible to effectively capture the flexural behaviour of RC beams by varying the reinforcement percentage 
and/or the beam depth. 



Finally, a special mention has to be given to the 
steel-concrete interaction. The most appropriate law 
for the reinforcing bar bridging a tensile crack 
propagating in concrete is a nonlinear relationship 
between force and crack opening. For this reason, it 
is appropriate to consider a bond-slip law character-
izing the interaction between steel and concrete. 

In the next sections we propose a method able to 
describe step-by-step the behaviour of a reinforced 
concrete member during both fracturing and crush-
ing. Firstly, we introduce separately the elementary 
models that we use to describe the whole concrete 
behaviour: the Cohesive Crack Model for concrete 
in tension, the Overlapping Crack Model for con-
crete in compression, and the stress-displacement re-
lationship for steel in tension. A closed-form solu-
tion is also proposed to demonstrate that the strain 
localization in compression causes ductile-brittle 
transition by varying the structural dimension. Fi-
nally, the proposed numerical algorithm and some 
applications are reported to investigate on the influ-
ence of the various model’s parameters. 

2 MATHEMATICAL FORMULATION 
 
Let us consider the reinforced concrete member 
shown in Fig. 1, subjected to a bending moment M. 
We assume that the midspan cross-section is fully 
representative of the mechanical behaviour of the 
whole element. The stress distribution is linear-
elastic until the tensile stress at the intrados achieves 
the concrete tensile strength. When this threshold is 
overcome, a cohesive crack propagates from the bot-
tom side toward the upper side. Correspondingly, 
the applied moment increases. Outside the crack, the 
material is assumed to behave elastically (Fig. 2). 
The stresses in the cohesive zone depend on the 
crack opening displacement and become equal to 
zero when the crack opening reaches a critical value 
and beyond.  

On the other hand, concrete crushing takes place 
when the maximum stress in compression reaches 
the concrete compressive strength. Damage is de-
scribed as a compenetration between the two half-
beams representing the cause of the localization of 
the dissipated energy (Fig. 3). Larger  the compene-
tration, also called overlapping, lower the trans-
ferred forces along the damaged zone. 

2.1 Cohesive Crack Model 
Linear Elastic Fracture Mechanics has been proven 
to be a useful tool for solving fracture problems, 
provided that a crack-like notch or flaw exists in the 
body and that the nonlinear zone ahead of the tip is 
negligible. These conditions are not always fulfilled 
and, both for metallic and cementitious materials, 
the size of the nonlinear zone due to plasticity or mi-

crocracking may be not negligible with respect to 
other dimensions of the cracked geometry. The lo-
calized damaged material may be modelled as a pair 
of restrained fracture surfaces. This idea has been 
extensively applied to materials which are com-
monly classified as quasi-brittle such as concrete, 
glass, polymers, rocks, etc. In particular, the most 
suitable model for concrete was firstly proposed by 
Hillerborg et al. (1976) with the name of Fictitious 
Crack Model. Carpinteri (Carpinteri et al. (1985) 
and Carpinteri (1989a)), introduced the terminology 
Cohesive Crack Model and applied an updated algo-
rithm to the study of ductile-brittle transition and 
snap-back instability in concrete.  

 
 

 
Figure 1. Scheme of a reinforced concrete element. 

 

 
Figure 2. Cohesive stress distribution in tension with linear-
elastic distribution in compression.  

 
 

 
Figure 3. Nonlinear behaviour in tension and compression. 

 
The hypotheses of the model can be summarized 

as follows: 
(1) The constitutive law used for the non-

damaged zone is the σ-ε linear-elastic law shown in 
Fig. 4a. 

 (2) The process zone develops when the maxi-
mum stress reaches the ultimate tensile strength. 

(3) The process zone is perpendicular to the main 
tensile stress. 

(4) In the process zone, the damaged material is 
still able to transfer a tensile stress across the crack 
surfaces. The cohesive stresses are considered as de-



creasing functions of the crack opening wt, (see Fig. 
4b): 
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where wt
 is the crack opening, wt

c  is the critical 
value of the crack opening and σt,u is the ultimate 
tensile strength of concrete. 

The shaded area under the stress vs. displacement 
curve in Fig. 4b represents the fracture energy, GF

t.  
 
 

 
Figure 4. Concrete constitutive laws in tension: linear-elastic 
(a); post-peak softening (b). 

2.2 Overlapping Crack Model for concrete 
crushing 

The most frequently adopted constitutive laws for 
concrete in compression describe the material be-
haviour in terms of stress and strain. This approach 
imply that the energy is dissipated over a volume, 
whereas experimental results reveal that the energy 
is mainly dissipated over a surface. Hillerborg 
(1990) firstly proposed to model the crushing phe-
nomenon as a strain localization over a length pro-
portional to the depth of the compressed zone. How-
ever, the evaluation of this characteristic length is 
rather complicated by the fact that the depth of the 
compressed zone varies during the loading process. 
As a result, it is difficult to formulate a material con-
stitutive law describing the mechanical response of 
concrete in compression. 

In our formulation, we introduce a stress-
displacement relationship between the compressive 
stress and the compenetration, in close analogy with 
the cohesive model. The main hypotheses are the 
following: 

(1) The constitutive law used for the undamaged 
material is a linear-elastic stress-strain relationship, 
see Fig. 5a. 

(2) The crushing zone develops when the maxi-
mum compressive stress achieves the material 
strength for concrete. 

(3) The process zone is perpendicular to the main 
compressive stress. 

(4) The damaged material in the process zone is

assumed to be able to transfer a stress between the 
overlapping surfaces. Concerning the crushing 
stresses, they are assumed to be a decreasing func-
tion of the compenetration wc (Fig. 5b): 
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where wc
 is the compenetration, wc

c  is the critical 
value of overlapping and σc,u is the ultimate com-
pressive strength. This zone is represented by a ficti-
tious overlapping, that is analogous to the fictitious 
crack in tension, as shown in Fig. 6. 

In analogy with the cohesive crack model, we can 
define the area under the stress-displacement curve 
as the crushing energy, GF

c. 
 
 

 
Figure 5. Concrete constitutive laws in compression: linear-
elastic (a); post-peak softening (b). 

 
 

 
Figure 6. Compression crushing with overlapping (a); tensile 
fracture with cohesive zone (b). 

 
A more sophisticated stress-displacement law 

considering the phenomenon of compacting, was re-
cently proposed by Suzuki et al. (2006). In this case, 
the crushing energy is computed according to the 
following empirical equation, which considers the 
confined concrete compressive strength, by means of 
the stirrup yield strength and the stirrup volumetric
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Parameter GF
c
,0 is the crushing energy for uncon-

fined concrete, σc,0 is the average compressive 
strength, ka is the parameter depending on the stirrup 
strength and ratio and pe is the effective lateral pres-
sure. 

A comparison between the crushing energy and 
the fracture energy for different compressive 
strengths is proposed in Tab. 1. The crushing energy 
is calculated according to Eq. (3) for concrete with-
out stirrups, while the fracture energy is calculated 
according to the CEB-FIP Model Code 90 in case of 
maximum aggregate dimension of 16 mm. It is 
worth noting that GF

c is between 2 and 3 orders of 
magnitude higher than GF

t. 
Finally, we remark that the critical values for 

crushing compenetration and crack opening are re-
spectively wc

c ≈ 1 mm and wt
c ≈ 0.1 mm. 

  
Table 1.  Comparison between crushing energy and fracture 
energy for different concrete compressive strengths. _____________________________ 
σc,0      GF

c    GF
t    ______   _____   _____     

N/mm2    N/mm   N/mm   _____________________________ 
30     30      0,065 
50   40      0,090 
70   51      0,117 
90     58      0,140 _____________________________ 

2.3 Steel-Concrete interaction 
In order to model the steel contribution to the load 
carrying capacity of the beam, it is necessary to in-
troduce a suitable bond-slip law for the characteriza-
tion of steel-concrete interaction. Typical bond-slip 
relationships are defined in terms of a tangential 
stress along the steel-concrete interface as a function 
of the relative tangential displacement between the 
two materials (see Jenq and Shah (1989), Model 
Code 1990, Carpinteri (1999)). The integration of 
the differential slip over the transfer length, ltr, is 
equal to half the opening crack at the reinforcement 
level, as shown in Fig. 7a. On the other hand, the in-
tegration of the bond stresses gives the reinforce-
ment reaction. In order to simplify the calculation, 
the stress-displacement law is assumed to be linear 
until the yield stress (or until the critical opening 
crack for steel wy

c) is achieved. After that, the rein-
forcement reaction is considered as constant (Fig. 
7b). 

 
Figure 7. Bond stresses τ in the transfer length ltr (a); stress-
displacement law for steel (b). 

3 PURE CRUSHING COLLAPSE 

Let us consider a reinforced concrete beam under 
three-point bending. We assume a rigid-perfectly 
plastic constitutive law for steel, whereas for con-
crete we use the constitutive law shown in Fig. 5. 
The linear elastic behaviour, with the stress distribu-
tion shown in Fig. 8, may be represented by the fol-
lowing nondimensional equation: 
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where the nondimensional load and the nondimen-
sional mid-span deflection are respectively given by 
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The parameter l is the beam span, d is the beam ef-
fective depth, t is the beam thickness and λ is the 
beam slenderness. 

Once the ultimate compressive stress, σc,u, is 
reached at the extrados, crushing develops in the 
middle cross-section. Such a nonlinear phenomenon 
admits the limit configuration shown in Fig. 9. In 
this situation, two rigid half-beams are connected by 
a hinge placed at the reinforcement level. The rota-
tional equilibrium is ensured by the applied load, the 
reaction forces and the linear distribution of the 
crushing forces. Clearly, this distribution depends on 
the amount of overlapping: the higher the penetra-
tion wc, the lower the crushing forces until they van-
ish for wc = wc

c. 
The rotational equilibrium around point A (see 

Fig. 9), provides the following nondimensional 
equation: 



 
Figure 8. Linear elastic strain and stress distribution. 

 

 
Figure 9. Limit situation of complete overlapping with linear 
distribution of crushing stresses. 
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While the linear Eq. (4) describes the mechanical 
response of the beam in the elastic regime, the hy-
perbolic Eq. (6) represents the asymptotic behaviour 
of the beam when it is completely failed in compres-
sion. 

Figure 10 shows two possible situations. When 
the domains are separated, the two P-δ branches, the 
linear and the hyperbolic one, may be connected by 
a regular curve (Fig 10a). On the other hand, when 
the two domains are partially overlapped, a snap-
back instability may occur (Fig. 10b). 

In conclusion, unstable behaviours and catastro-
phic events are expected when δ2 ≤ δ1, i.e., for:  
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which gives the following brittleness condition: 

6
1

,

≤
λε uc

c
Es . (9) 

The mechanical system is expected to be brittle for a 
low brittleness number, sc

E, a high ultimate strain, 
εc,u, and large slenderness, λ. 

It is worth noting that the brittleness condition in 
Eq. (9), as compared with that obtained for plain 

concrete beams, where sf
E/εt,uλ ≤ 1/3, (Carpinteri 

(1989b)) suggests that the crushing phenomenon is 
more ductile than pure tensile flexural failure. 
 

 

 
Figure 10. Load – Deflection diagrams: ductile condition (a); 
brittle condition (b) (δ1 = λ3/12; δ2 = sc

Eλ2/2εc,u). 

4 NUMERICAL ALGORITHM 

A discrete form of the elastic equations governing 
the mechanical response of the two half-beams is in-
troduced. To this aim the finite element method is 
used. At the middle cross-section the nodes of the 
finite element mesh are distributed along the poten-
tial fracture line (nodes from 1 to l) and the potential 
crushing line (nodes from l + 1 to n) (Fig. 11). The 
position of the ligament between nodes l and l+1 is 
arbitrary; it may depend on the ultimate configura-
tion, i.e. on the material parameters and the rein-
forcement percentage. In this scheme, cohesive and 
overlapping stresses are replaced by equivalent 
nodal forces. They depend on the nodal opening or 
closing displacements according to the cohesive or 
overlapping softening laws respectively shown in 
Fig. 4b and in Fig. 5b. 

The horizontal nodal displacements, w, along the 
middle cross-section can be computed as follows: 

{ } [ ]{ } { }MCFHw +=  (10) 

where {w} is the vector of nodal displacements, [H] 
is the matrix of the coefficients of influence for the 
nodal forces, {F} is the vector of nodal forces, {C} 
is the vector of the coefficients of influence for the 
applied moment and M is the applied moment. 

 

 
Figure 11. Finite element nodes along potential fracture (1 to l) 
and crushing (l+1 to n) lines. 



The coefficients of influence representing node 
opening or overlapping displacements are computed 
by a finite element analysis in which the fictitious 
structure shown in Fig. 11 is subjected to n + 1 dif-
ferent loading conditions. 

In Eq. (10) the reinforcement contribution is in-
cluded in the nodal force corresponding to the r-th 
node. 

In the generic situation shown in Fig. 12a, we can 
consider the following equations: 
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Equations (10) and (11) constitute a linear algebraic 
system of (2n) equations and (2n + 1) unknowns, 
i.e., the elements of the vectors {w} and {F} and the 
applied moment, M. The additional equation re-
quired to solve the problem is obtained by setting 
the value of the force at the fictitious crack tip, m, 
equal to the ultimate tensile force. The driving pa-
rameter of the process is the position of the fictitious 
crack tip, defined by the position of the node m in 
Fig. 12a, that is increased by one step at each itera-
tion. The position of the real crack tip, j, turns out to 
be a function of the crack opening. 

When crushing takes place, (see Fig. 12b), Eqs. 
11 are replaced by: 
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Figure 12. Force distribution with: cohesive crack in tension 
and linear elastic behaviour in compression (a); cohesive crack 
in tension and crushing in compression (b). 
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Again, Equations (10) and (12) constitute a linear 
algebraic system of (2n) equations and (2n + 1) un-
knowns. In this case, there are two possible addi-
tional equations: either the force in the fictitious 
crack tip, m, equal to the ultimate tensile force, or 
the force in the fictitious crushing tip, p, equal to the 
ultimate compressive force. In the numerical 
scheme, we choose the situation which is closer to 
one of these critical conditions. The driving parame-
ter of the process is the tip that in the considered 
step has reached the limit resistance. Only this tip is 
moved passing to the next step. 

Finally, at each step of the algorithm it is possible 
to calculate the beam rotation, ϑ, as follows: 

{ } { } MDFD m
T

F +=ϑ  (13) 

where {DF} is the vector of the coefficients of influ-
ence for the nodal forces and Dm is the coefficient of 
influence for the applied moment. The physical di-
mensions of the coefficients DFi and Dm are, respec-
tively, [F]-1 and [F]-1[L]-1. 

5 NUMERICAL EXAMPLES 

In this section we show the results of numerical 
simulations carried out to investigate on the influ-
ence of two fundamental parameters on the global 
mechanical behaviour, namely the beam depth and 
the steel percentage. The midspan cross-section was 
subdivided into 160 intervals and it was constrained 
in four nodes. This last region represents the elastic 
core of the beam at the ultimate condition. In all the 
following examples the slenderness, λ, and the 
thickness, b, are kept constant. 

The diagrams depicted in Fig. 13 show the me-
chanical response in terms of bending moment vs. 
localised beam rotation, by varying the beam depth 
for a steel percentage equal to 2%. 

 
Figure 13. Moment-Rotation diagrams for a constant steel per-
centage, ρ = 2%, and different beam depths, h. 



In the case of h = 200 mm, we have a ductile me-
chanical response, where the moment-rotation dia-
gram has a first part with positive slope then fol-
lowed by a plastic flow. Increasing the depth from 
200 mm to 400 mm, the plastic range decreases and 
a softening branch characterized by a low negative 
slope appears. An analogous behaviour, although 
more emphasised, is obtained when the depth is 
equal to 800 mm. Summarizing, we observe that the 
higher the beam depth, for a given reinforcement ra-
tio, the higher the global stiffness. Obviously, the ul-
timate resistant moment is an increasing function of 
the beam depth, whereas the plastic range is pro-
gressively diminished with the appearance of steeper 
and steeper softening branches. The algorithm puts 
into evidence that the crushing zone increases with 
the beam depth, while the crack opening at the intra-
dos decreases. 

Another set of simulations was carried out by 
considering a constant beam depth equal to 400 mm 
and by varying the reinforcement ratio from 0.12% 
to 3%. The resulting moment-rotation diagrams are 
shown in Fig. 14. According to the numerical and 
experimental results concerning the minimum rein-
forcement in RC beams (see Bosco et al. (1990), 
Bosco and Carpinteri (1992)), the global behaviour 
with a very low steel percentage (e.g. 0.12%) is brit-
tle. By increasing the steel ratio, two transitions may 
be highlighted. From ρ = 0.12% to ρ = 1% we have 
a transition from brittle to ductile and then, from ρ = 
1% to ρ = 3%, the mechanical behaviour becomes 
brittle again. For the highest reinforcement ratio, a 
softening branch occurs due to concrete crushing. In 
Figs. 15 and 16 we see that for a very low steel per-
centage (ρ = 0.12%) the ultimate resistant moment is 
provided by a tensile plastic flow in the reinforce-
ment and a compressive zone concentrated in the ex-
trados. In this case the ductile behaviour is due to 
the reinforcement yielding. With ρ = 1%, the rein-
forcement is yielded at the ultimate condition, but a 
lower value of crack opening is observed. On the 
other hand, the crushing contribution becomes more 
relevant. 

 
Figure 14. Moment-Rotation diagrams for a constant beam 
depth, h = 400 mm, and different steel percentages, ρ. 

 
Figure 15. Horizontal nodal displacements for a constant beam 
depth, h = 400 mm, and different steel percentages, ρ, at the ul-
timate condition. 
 

 

 

 
Figure 16. Stress distribution at the ultimate condition referred 
to: ρ = 0.12% (a), ρ = 1% (b), ρ = 3% (c) (h = 400 mm). 

 
For a very high steel percentage (ρ = 3%) the rein-
forcement is not yielded and so the only contribution 
to the ductility results from crushing. In this situa-
tion the ultimate resistant moment is not propor-
tional to the reinforcement ratio, because it is limited 
by the maximum compressive force. 



Finally, it is worth noting that, in the case of low 
steel percentages, crushing does not take place and a 
single nondimensional parameter, NP (Carpinteri 
(1981) and (1984)) can be used to describe the tran-
sition from ductile to brittle behaviours: 

c
t

F

y
P

E

h
N

G

5.0ρσ
=  (14) 

A brittle to ductile transition clearly emerges in 
the diagrams of Fig. 17, when the brittleness number 
increases. The diagrams reveal an unstable response, 
represented by a strain-softening relationship, for the 
lower brittleness number, and a stable response, rep-
resented by a strain-hardening relationship, for the 
higher brittleness number. 

 

 
Figure 17. Moment-Rotation diagrams for a low reinforcement 
ratio, ρ = 0.25%, and two different brittleness numbers, NP. 

6 CONCLUSIONS 

In this paper we have proposed a new mathematical 
and  numerical approach to the problem of crushing 
in RC beams, which is treated in analogy with the 
cohesive formulation. The effect of the reinforce-
ment contribution, which is not usually included in 
the cohesive models, has been taken into account as 
a local modification of the tensile cohesive law. 

This very general approach has permitted to in-
vestigate on the competition between compressive 
crushing and tensile cracking in RC beams, with 
special focus on size-scale effects. Future develop-
ments are expected as far as the analysis of the size 
effects on the rotational capacity is concerned. In 
this framework, a comparison with the experimental 
results in Bosco, Carpinteri and Debernardi (1992) 
will be proposed. 
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