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ABSTRACT: Inverse analysis technique is used to derive a non linear mode II interface law for Fiber Rein-
forced Polymer (FRP) – concrete bonding starting from experimental data. The proposed interface law is 
based on a fractional formula and includes non linear compliance contributions of adhesive and concrete 
cover at high shear stresses. It depends on three parameters (maximum shear stress, corresponding slip and an 
exponent), which are calibrated from experimental results on delamination tests. Values of maximum loads 
for different bonding lengths and strains profiles along FRP plates are used. Parameter identification is per-
formed by inverse analysis using a Direct Search technique. Considerations on well-posedness of inverse 
problem adopting different cost functions are given. After parameter identification, numerical results obtained 
with the proposed interface law are found to be in very good agreement with experimental results. 

1 INTRODUCTION 

It is well known that failure modes due to FRP de-
lamination may significantly reduce the theoretical 
bearing capacities of FRP-strengthened R/C beams. 
A complete knowledge of bond-slip law in terms of 
fracture energy, peak point and initial stiffness, is 
fundamental to correctly design FRP retrofitting. 
First, for sufficiently long bonded lengths, ultimate 
failure load due to delamination mainly depends on 
fracture energy of mode II interface law. Moreover, 
evaluation of effectiveness of strengthening under 
service loadings requires to calculate stress concen-
trations close to transverse cracks in concrete and 
verify it is lower than peak shear stress (Teng et al. 
2003, CNR Committee 2006). In the linear range, 
stress concentration is governed by initial stiffness 
of the interface, where compliances of both adhesive 
and external cover of concrete must be taken into 
account. 

In Teng & Smith (2002), some recently proposed 
interface laws are reviewed. The most common in-
terface law is based on a bilinear shear stress – slip 
relation, with peak shear stress defined from Mohr-
Coulomb criterion for concrete and corresponding 
slip arbitrarily assumed, and final slip of softening 
branch defined in order to attain a given value of 
fracture energy of the law (about 0.15-0.2 mm). 
Comparison with more sophisticated laws (Ferracuti 
et al. 2006) showed that this relation is very rough 
for several reasons: first of all, peak shear stress 
cannot be obtained from concrete properties only, 

depending also on surface preparation before bond-
ing and the adopted adhesive; moreover, slope of 
linear softening branch has not a physical meaning. 
As a result, delamination force for short bonded 
lengths is strongly overpredicted. 

A power fractional FRP – concrete interface law 
has been proposed by Ferracuti et al. (2007), whose 
parameters (peak shear stress, corresponding slip 
and an exponent) are calibrated by post-processing 
experimental data: from equilibrium and compatibil-
ity considerations, average shear stress and slip data 
are computed, and a least-square procedure is 
adopted to determine the parameters. This study 
clearly shows that, from the experimental point of 
view, evaluation of maximum delamination force 
(global data) or applied force – plate displacement 
curves only is not sufficient to provide data to define 
a shear stress – slip interface law. Very accurate 
tests with measure of strains (local data) along the 
FRP plate are also needed. 

In the present paper, a more complete inverse 
analysis procedure is used to calibrate the parame-
ters of a non linear constitutive law for FRP – con-
crete interface. The previously quoted interface law 
and a bond – slip model recently proposed by the au-
thors (Ferracuti et al. 2006), are adopted.  

Inverse analysis technique is applied to a set of 
experimental results by Mazzotti et al. (2007) on 
FRP – concrete delamination. Experimental results 
have been obtained in terms of strains on FRP plate 
at different values of applied force and delamination 
forces for different bonding lengths.  



Identification method based on genetic algo-
rithms (Storn & Price 1997) is used to perform in-
verse analysis. The adopted method (Differential 
Evolution algorithm) is a direct search approach, 
which is able to avoid convergence on local minima 
of cost function. In the present problem, the cost 
function is a weighted sum of errors on prediction of 
strains along the FRP plate and delamination forces. 
Considerations on well-posedness of inverse prob-
lem are drawn. It is shown that, as already under-
lined in inverse problems in very different frame-
works (see Iacono et al. 2006 and Slowik et al. 2006 
for identification of softening law of concrete in ten-
sion or Savoia & Vincenzi 2005 for identification of 
mechanical properties of structures from dynamic 
tests), well-posedness is achieved only if both global 
data (e.g. load – deflection curves) and local data 
(strains along FRP plate) are considered in cost 
function. 

Finally, parameters obtained from inverse analy-
ses have been used to simulate experimental tests 
and numerical results are found in very good agree-
ment with experimental results. 

2 FRP-CONCRETE INTERFACE LAW 

The definition of a mode II interface FRP - concrete 
law is a difficult task for several reasons. From the 
experimental point of view, tests where force – dis-
placement curves only are determined do not pro-

vide for sufficient data to define a local interface 
law. Measures of strains along FRP plate are also 
required. On the other hand, transmission length of 
local stresses at the interface level is very small, less 
than 80-100 mm from bonding extremity, and sev-
eral strain gages must be placed within that length. 
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Figure 1. The proposed FRP – concrete interface law (see 
Equation 1), for n = 3.008, τ = 7.72 MPa, s = 0.0218 mm.  
 
 
 
 
 
 
 
 
 
 
Figure 2. Pull-pull setup for FRP-delamination test (from Maz-
zotti et al. (2007)).  

Moreover, interface law and numerical model are 
strictly interconnected: kinematic variables the inter-
face law is referred to depend on the features of the 
adopted model. For instance, in the present model 
(see Section 4), slip is referred to average displace-
ment of concrete cross-section and, consequently, 
interface compliance must take shearing deformation 
of both adhesive and external cover of concrete into 
account, also at high shear stresses. At load levels 
typical of service loadings (about 50 per cent of 
maximum load), maximum slip may already exceed 
that corresponding to peak shear stress. Softening 
branch is also very important, since fracture energy 
of interface law and, consequently, maximum trans-
missible load strongly depend on it. 
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Following Ferracuti et al. (2007), the adopted in-
terface law is a power fractional law (see Figure 1):  
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where τ, sp are FRP-concrete shear stress and slip. 
Moreover, τ , s  indicate maximum shear stress and 
corresponding slip, whereas n > 2 is a parameter 
mainly governing the softening branch. Equation 1 
is depicted in Figure 1, adopting values of parame-
ters ( τ , s , n) obtained in numerical application re-
ported in Section 6.  

3 CALIBRATION OF INTERFACE LAW BY 
INVERSE ANALYSIS 

3.1 Experimental test by Mazzotti et al. (2007) 
In order to calibrate an interface law, four pull-pull 
tests from the experimental campaign by Mazzotti et 
al. (2007) are considered in the present study (Figure 
2). Four different bonded lengths BL (50, 100, 200 
and 400 mm) were tested, by gluing CFRP plates 
(plate width bp = 80 mm, thickness hp = 1.2 mm) to 
concrete blocks (150×200×600 mm).  

Data obtained from experimental tests are maxi-
mum transmissible forces F for different bonding 
lengths and axial strains ε along the FRP plate for 
different levels of applied load.  

3.2 Global data: maximum force  
As well known, increasing the length of the anchor-
age, transmissible force increases asymptotically up 
to a maximum value, depending on fracture energy 
of interface law and mechanical/geometrical proper-



ties of the plate. Maximum transmissible force by an 
anchorage of infinite length is defined as: 

∫
∞
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0
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with bp = plate width, and the following relation 
holds between Fmax and fracture energy of interface 
law Gf  (see Ferracuti et al. 2006): 
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Figure 3. (a) The proposed interface law and (b) a typical dis-
tribution of strains along the plate before and after the onset of 
delamination: kp = initial stiffness, τ  = peak shear stress, Gf = 
racture energy of interface law. 

where hp, Ep stand for thickness and elastic modulus 
of FRP plate. Equation 3  shows that a correct esti-
mate of fracture energy is fundamental for the defi-
nition of interface law, because only in this case the 
value of maximum transmissible load can be accu-
rately predicted.  

For the proposed interface law, fracture energy 
can be expressed in closed form as a function of 
governing parameters ( τ , s , n): 
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where gf  is given by: 
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Equation 5 confirms that Equation 1 requires n > 
2, otherwise the fracture energy is not a positive and 
finite quantity. 

3.3 Local data: axial strain along FRP plate 
As shown in Figure 3b, distribution of strains along 
the plate for low values of applied load is governed 
by the initial stiffness of interface law. Initial stiff-
ness of the adopted interface law can be written as a 
function of three unknown parameters ( τ , s , n) as: 
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On the contrary, for high values of applied load, 
maximum slope of strain profile along the plate is 
governed by the maximum shear stress τ  (see 
Figure 3b), as shown by the following equilibrium 
equation: 
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where Ap, Ep stand for area and elastic modulus of 
FRP plate, whereas σp , ε are axial stress and strain 
of FRP.  

Therefore, if experimental values of maximum 
forces at delamination only are adopted for parame-

ter estimation, ill-posedness of identification prob-
lem can be expected. In fact, except for the case of 
very short bonded lengths, maximum transmissible 
load by an anchorage depends on fracture energy of 
interface law only, as confirmed by Equation 3. 
Three unknown parameters cannot be identified us-
ing one information only. On the contrary, if values 
of strains along FRP plate are also used, two addi-
tional information are introduced (initial stiffness 
and peak shear stress), and a well-posed identifica-
tion problem can be expected. 

3.4 Inverse analysis: the cost function  
The cost function to be minimized during the identi-
fication procedure is the relative error between ma-
ximum forces (Fk) and strains (εijk) obtained from 
numerical model (described in Section 4) adopting a 
given set of identification parameters ( )sn ,, τ , and 
experimental data ( )ijkkF ε, , i.e.: 
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where subscripts i, j, k indicate, respectively, i-th po-
sition of strain gauge along the plate (i=1:m), j-th 
level of applied load in a delamination test (j=1:f), 
and k-th bonded length BL (k=1:4); moreover, f and 
m are numbers of selected load levels and strain 
gauges along the plate, and w1, w2 are weight con-
stants for forces and strains. Values are set in a non-

f 



dimensional form with respect to experimental force 
( kF ) and to strain corresponding to first strain gage 
( jk1ε ), respectively. 

4 MODEL FOR FRP-CONCRETE 
DELAMINATION  

A non-linear bond – slip model has been recently 
developed by the authors to study FRP-concrete de-
lamination phenomenon (Ferracuti et al. 2006). No-
tation adopted for displacements and stresses is re-
ported in Figure 4. Plate and concrete are subject to 
axial deformation only, i.e., bending of plates is ne-
glected. This assumption is valid in the present case, 
due to negligible bending stiffness of FRP plate with 
respect to concrete specimen counterpart. 

Axial displacements and forces for concrete and 
plate are denoted by uc, up, σc, σp. The governing 
equations are equilibrium, constitutive and compati-
bility conditions, which can be written in the form: 
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where A and E stand for area and Young modulus, 
respectively, and subscripts c, p for concrete and 
FRP plate.  

According to notation reported in Figure 4, FRP – 
concrete interface law is then written in the form: 

pppp ssk ⋅=τ )( , (11) 

where sp = up – uc denotes FRP-concrete slip and 
kp(sp) is the non-linear secant stiffness of interface 
law. 

By substituting Equation 11 in Equations 9, 10, a 
system of non-linear first order differential equations 
can be obtained: 

)(),(
d

)(d xx
x
x yyAy

= ,        0 ≤ x ≤ BL, (12) 

where BL is the length of the bonded plate, vector y 
collects the unknown functions: 

{ cpcp
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and the non-linear matrix A is:  
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5 INVERSE ANALYSIS BY DIFFERENTIAL 
EVOLUTION ALGORITHM 

Differential Evolution (DE) is a heuristic direct 
search approach (Storn & Price 1997). A number NP 
of vectors containing the optimization parameters is 
adopted:  

{ } NPisnMi ,...,2,1,,,, =τ=z  

Subscript M indicates the M-th generation of pa-
rameter vectors, called population. The number NP 
of vectors of the population is kept constant during 
the minimization process. 

In order to minimize the objective function, a di-
rect search method is a strategy that generates varia-
tions of parameter vectors. A robust algorithm re-
quires that solution does not converge to a local 
minimum. Techniques like genetic and evolution al-
gorithms are based on the calculation of several vec-
tors simultaneously. Hence, if some vectors reach 
local minima, they can be excluded because they are 
associated with higher values of the cost function.  

DE algorithm is briefly described. First of all, ini-
tial population is chosen randomly. Then, DE gener-
ates a new parameter vector by adding the weighted 
difference vector between two vectors of the popula-
tion, so obtaining a third vector (Mutation opera-
tion). Then, in the Crossover operation, a new trial 
vector is generated by selecting some components of 
the mutant vector and some of the original vector. If 
the trial vector gives a lower value of objective 
function than that of the old population, the new 
generated vector replaces the old vector (Selection 
operation). These operations are described with 
more details in the following. 

5.1 Mutation 
For each vector of M-th population  i= 1, 2, …, ,,Miz
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Figure 4. The bond-slip model for FRP-concrete delamination: notation adopted for displacements and stresses. 



NP, a trial vector vi,M is generated by adding to zi,M a 
contribution obtained as the difference between two 
other vectors of the same population.  

According to Storn & Price (1997), the mutant 
vector is generated according to the expression: 

)( ,,,1, 21 MrMrMbestMi zzzv −⋅γ+=+ , (15) 

where 21  are mutually different in-
teger numbers and zbest,M is the vector giving the 
minimum value of the object function of the M-th 
population (see Figure 5) Moreover, γ < 2 is a posi-
tive constant (scale parameter) controlling the ampli-
tude of the mutation.  

{ NPrr ,...,2,1, }∈

5.2 Crossover  
In order to increase the diversity of the vectors, 
crossover process is introduced in the DE algorithm. 

The trial vector ui,M+1 is obtained by randomly 
exchanging the values of optimization parameters 
between the original vectors of the population zi,M 
and those of mutant population vi,M+1, i.e.: 
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In Equation 16,  and (ui,M+1)j is the j-th 
component of vector ui. Moreover, rand(j) is the j-th 
value of a vector of uniformly distributed random 
numbers, and CR is the crossover constant (0 < CR < 
1), indicating the percentage of mutations. 

3,2,1=j

5.3 Selection 
In order to decide if a vector ui may be element of 
new population of generation M+1, each element of 
the vector ui,M+1 will be compared with the previous 

vector zi,M. If vector ui,M+1 gives a smaller value of 
objective function H than zi,M,  ui,M+1 is selected as 
the new vector of population M+1.  

Bounds
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Figure 5. Differential Evolution algorithm for parameter identi-
fication: mutation operation (according to best combination). 

Otherwise, the old vector zi,M is retained, i.e.: 
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with NPi ,...,2,1= . 

6 NUMERICAL  APPLICATION 

Inverse analysis procedure is applied to the present 
problem, adopting the cost function reported in 
Equation 8, with weight constants for force and 
strain contributions equal to w1 =1 and w2 =1/f (f be-
ing the number of load levels considered), respec-
tively. For three unknown parameters of interface 
law ( )sn ,, τ , the values n = 3.008, 72.7=τ  and 

0218.0=s  have been obtained. In the following, the 
present solution will be denoted as Case A. 

6.1 Numerical against experimental results 
Experimental tests have been then numerically simu-
lated with the bond-slip model described in Section 
4 and identified values of parameters ( )sn ,, τ ; re-
sults have then been compared with experimental 
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Figure 6. Strains along the bond length at different loading lev-
els: numerical results (⎯) and experimental data from Maz-
zotti et al. (2007) (• • •): (a) BL = 50 mm, (b) BL = 100 mm.



data. 
Strain distributions in FRP plate along the bonded 

length are given in Figure 6 for 50 mm and 100 mm 
bond length, respectively. The highest load level 
considered is close to failure load obtained experi-
mentally. Numerical results are generally in good 
agreement with experimental data. For all bonded 
lengths, the behavior for low loads is very well pre-
dicted, so assuring that stiffness of initial (elastic) 
branch of interface laws is correctly evaluated. 
Moreover, the bond-slip model is able to follow the 
growth of delamination at constant load along the 
bonded length. 

FRP strain and shear stress distributions for 
bonded lengths equal to 200 mm and 400 mm are 
reported in Figures 7, 8; white dots refer to data ob-
tained during delamination phase. As for shear 

stresses, numerical and experimental results are in 
good agreement for low – to – medium loadings. For 
very high loads, i.e., when plate delamination is in 
progress, results obtained from experimental data 
are more irregular. In any case, position of maxi-
mum shear stress along the bonded length is well 
predicted.  

Finally, delamination loads obtained numerically 
as a function of bonded length are compared with 
experimental results in Figure 9 (see Case A). Re-
sults confirm that the proposed interface law pro-
vides for a good prediction of failure loads. For the 
smallest bonded length (50 mm), the experimental 
load is lower than predicted numerically: when the 
length of the plate is smaller than width, assumption 
of plane deformation adopted for 1D bond-slip 
model is not longer valid, and a more complex non 
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Figure 7. (a) Strains and (b, c) shear stresses at low and high 
loading levels: numerical results (⎯) and experimental data 
from Mazzotti et al. (2007) (• • •), for BL = 200 mm. 
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Figure 8. (a) Strains and (b,c) shear stresses at low and high 
loading levels: numerical results (⎯) and experimental data 
from Mazzotti et al. (2007) (• • •), for BL = 400 mm.
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Figure 10. Cost function obtained for (a) Case A for n = 3.00   
(reference solution), (b) Case B for n = 3.04, (c) Case C for n 
= 2.98. 

linear 3D model should be required. 
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Figure 9: Results obtained by inverse analyses with different 
cost functions: maximum force vs bond length compared with 
experimental results.  

6.2 Well-posedness of inverse problem  
The choice of cost function to be minimized is very 
important to obtain a well-posed inverse problem for 
parameter identification. This problem, well known 
in dynamic identification problems (Savoia & Vin-
cenzi 2005), has been recently treated in Iacono et 
al. 2006 for parameter identification of non local 
damage problems.  

In the present study, three different cost functions 
have been considered, with different values of w1, w2 
weight constants for force and strain contributions in 
Equation 8.  

 In the first case (Case A), both maximum forces 
at delamination for different bonding lengths and 
FRP strains at different force levels have been 
adopted, with w1 =1, w2 =1/f in Equation 8. This 
problem has been described in the previous section, 
and the corresponding solution is considered as the 
reference solution. In the second case (Case B), 
maximum forces for different bonding lengths only 
have been considered in the calibration procedure 
(w1 =1, w2 =0). In the third case (Case C), strains for 
different loading levels and bonding lengths only 
have been considered (w1 =0, w2 =1/f). 

For each cost function, inverse analysis has been 
performed by DE algorithm. Best values of un-
known parameters are reported in Table 1 and inter-
face laws are depicted in Figure 11.  

Contour lines of cost function vs. ( s,τ )  parame-
ters are shown in Figure 10, setting the value of ex-
ponent n equal to the identified value for each indi-
vidual case. The minimum of the three cost 
functions is indicated in each figure with a cross.  

Figure 10b clearly shows that, adopting maxi-
mum forces only (Case B), a direction exists where 
the cost function is almost insensitive to variations 
of identification parameters s,τ . That direction cor-
responds to constant values of fracture energy of in-
terface law (see Equation 4). For Case C (strain 
measures only), cost function is similar to reference 
Case A. However, minimum curvature is smaller, so 
indicating that identification of unknown parameters 
can be numerically more computationally expensive. 

A sensitivity analysis has been also performed to 
determine minimum curvature of objective functions 
(see Table 1). Results clearly show that, adopting 
both forces and strains, minimum curvature of cost 
function increases by a factor greater than 6 with re-
spect to the case of only forces. Of course, smaller 
values indicate smaller sensitivity of cost function to 
parameter variation. 

Finally, in Figure 11, debonding forces obtained 
with interface laws whose parameters have been ob-
tained by adopting different cost functions are com-
pared with experimental results. Smallest error in 
terms of debonding forces is obtained in Case B 
whose cost function is based on global data (forces) 
only. Nevertheless, in this case the error on strain 
profiles is much higher that reference Case A as 
shown in Figure 12. 



7 CONCLUSIONS 

Inverse analysis is used to derive a non linear mode 
II interface law for Fiber Reinforced Polymer (FRP) 
– concrete bonding starting from experimental data. 
The proposed law is based on a power fractional law 
depending on three parameters, maximum shear 
stress with corresponding slip and an exponent. Pull-
pull delamination tests from Mazzotti et al. (2007) 
are considered: experimental data are both maxi-
mum forces and strain profiles along FRP plate. A 
direct search method (Differential Evolution algo-
rithm) is used to solve the inverse problem. Well-
posedness of inverse problems adopting different 
cost functions is discussed. It is shown that, if only 
maximum forces are adopted, the problem is ill-
posed and cost function is much less sensitive to pa-
rameter variation. On the contrary, if both maximum 
forces and FRP strain are used, sensitivity of cost 
function to parameter variation is much higher and 
identification can be performed correctly.  

Adopting the so obtained mode II interface law 
and the bond – slip model described in Section 4, 
very good agreement is found between numerical 

and experimental results, in terms of FRP strains, 
shear stress profiles before and during delamination 
and values of maximum forces, so assessing the va-
lidity of the proposed technique. 
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Figure 11: Results obtained by inverse analyses with different 
cost functions: FRP – concrete interface laws 
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Figure 12: Results obtained by inverse analyses with different 
cost functions: distribution of strain along the plate. 
 

Table 1. Comparison between results obtained by inverse 
analysis with different cost function.  __________________________________________________ 
Case  n   τ    s     Gf    Min curvature _____ _____    _____ ______  ______  ____________ 
   -   MPa  mm   MPa mm   - __________________________________________________ 
A   3.01   7.72   0.0218  0.4818  0.0104  
B   3.04  6.14  0.0301  0.5173  0.0016  
C   2.98  8.11  0.0219  0.5189  0.0098  __________________________________________________ 
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