
1 INTRODUCTION 

Microcracking and cracking have a strong influence 
on instantaneous and long-term behaviour of con-
crete (Ghali & Favre 1994). Adoption of constitutive 
law for concrete in his cracked state is essential and 
mandatory to describe structural deformability under 
service loads. Another important phenomenon for 
structures during their service life is creep deforma-
tion, which can cause deflections two or three times 
greater then instantaneous counterpart (Bažant 1988, 
Favre et al. 1997).  

Service behaviour of reinforced concrete is par-
ticularly important for some kinds of structures such 
as bridges or roof girders, due to their large spans 
and small thicknesses, increasing deformation and 
creep effects. For these structural elements, warping 
effects may be very significant and traditional beam 
models do not apply properly; theories for thin-
walled beams are much more appropriate (see Laud-
iero & Savoia 1990, Capuani et al. 1998, Prokič 
1996, Prokič 2002).   

In the present paper, a non-linear finite element 
model is presented for the analysis of deformability 
of reinforced concrete thin-walled beams.  

A finite element formulation for thin-walled 
beams is firstly introduced (see also Bottoni et al. 
2006); the kinematic model is described and equa-
tions derived from FE discretization are given. Main 
assumption is that of cross-sections rigid in their 
own planes; this hypothesis reduces the total number 
of dofs involved in the analysis and, correspond-
ingly, computational effort. Furthermore, it is ac-
ceptable for analysis of beams under service load-
ings. On the contrary, longitudinal displacements are 
obtained through dofs in the section plane, so allow-
ing for warping or shear-lag effects. Longitudinal 

displacement is considered constant within the 
thickness. The resulting finite element is essentially 
a membrane element with null deformation along the 
transverse axis. The presence of ordinary or 
prestressed steel reinforcement is considered 
through homogenization over the thickness.  

As far as material modelization is concerned, a 
smeared crack approach is adopted for concrete, 
providing the average behaviour under tension after 
cracking. Ordinary steel reinforcement is modelled 
as layers of different materials in the finite element, 
whereas prestressed steel strands are modelled as 
separate panels.  

Solution algorithm in the non-linear range is de-
veloped, adopting a displacement-control method as  
proposed by Batoz & Dhatt (1979).  

Finally, an example of a roof precast and 
prestressed RC element is reported. Results are 
given in term of load-deflection curves, strains and 
stresses distributions as well as concrete cracking 
maps.  

2 THE FINITE ELEMENT MODEL  

2.1 Kinematic model 
The kinematic model is defined according to the ref-
erence system shown in Figure 1, where a prismatic 
reinforced concrete thin-walled beam is depicted; 
each branch of the cross-section can be constituted 
by different materials through-the-thickness, in order 
to consider the presence of reinforcement steel.  

A global right-handed orthogonal coordinate sys-
tem  (O; x, y, z) is adopted, where x- and y- are two 
general axes belonging to the cross-section plane. 
Location of the reference system origin O and direc-
tion of x- and y-axes are general, i.e. they do not 

FEM model for analysis of RC prestressed thin-walled beams 

M. Bottoni, C. Mazzotti & M. Savoia 
DISTART - Structural Engineering, University of Bologna, Bologna, Italy 
 

 
 

 
 

 
 

ABSTRACT: This paper deals with service behavior of prestressed cracked thin-walled beams. A non linear 
finite element model for thin-walled beams has been developed. Deflections in the non-linear range are ob-
tained by adopting a smeared crack model for concrete in tension. Contribution of steel bars in reducing de-
formation has been considered. An example of a thin-walled prestressed girder is presented. 



necessarily coincide with centroid (or shear centre) 
and principal axes of the cross section. Coordinates 
of general point P can be expressed as: 

( ),sxx =     ( )syy =  (1) 

where s is a curvilinear coordinate lying on the pro-
file centerline. At any general point P of section 
contour, a local right-handed orthogonal coordinate 
system (P; xs, xn, z) is also defined (Fig. 1), where 
xs- and xn- axes, lying in the section plane, are tan-
gential and orthogonal to the centerline, respec-
tively.  

Together with the definition of a reference system, 
the kinematic model is based upon the following 
main assumptions:  
a)  Thickness of various branches constituting the 

cross-section is small with respect to overall 
cross-section dimensions; 

b) Cross-sections are rigid in their own planes; 
c) Displacements along z-direction are independent 

from cross-section in-plane displacements;  
d) No variation of kinematic or static variables 

across the thickness is considered.  
According to hypothesis b), in-plane displace-

ments of point P are defined through rigid move-
ments of the cross-section itself; therefore, they can 
be expressed as a function of displacement compo-
nents ξ(z) and η(z) of O along x- and y-axes and of 
θ(z), cross-section rotation around O (Fig. 2). 

According to hypothesis c), w(s,z) is the dis-
placement along the longitudinal axis z and it is 
independent from other displacement components. 
Accordingly, displacements of general point P(s,z) 
along x−, y− and z−directions are, respectively (Bot-
toni et al. 2006): 

( ) ( ) ( )zyzz,su θ−ξ=  (2a) 

( ) ( ) ( )zxzz,sv θ+η=  (2b) 

w = w(s,z) (2c) 

By geometrical considerations, displacements of 
point P(s,z) along local coordinate axes xn, xs can be 
expressed as:  

( ) ( ) ( ) ( ) ( ) ( ) ( )zsh
s
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s
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d
d

d
d  (3a) 

( ) ( ) ( ) ( ) ( ) ( ) ( )zsr
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d
d

d
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respectively, where r(s) and h(s) are components 
along xn, xs of vector OP, i.e. (see Fig 1): 

( )
s
sxsy

s
sysxsr

d
)(d)(

d
)(d)( −=  (4a) 

( )
s

ysy
s
sxsxsh

d
sd)(

d
)(d)()( +=  (4b) 

2.2 Strain and stress components 
From Equations 3, strain components εz, γzs, γzn can 
be written as:  
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According to hypothesis d) of section 2.1, strain 
components are constant across wall thickness. 
Moreover, due to small wall thickness, strain com-
ponent γzn can be neglected. Finally, strain compo-
nents εs, εn, e γns are zero due to hypothesis b) of 
rigid cross-sections.  

Shear strain SV
zsγ , corresponding to Saint Venant 

torsion and linearly varying across wall thickness 
with null value on the centerline, is then superim-
posed to shear strain defined in Equation 5b. This 
strain component cannot be derived rigorously from 
displacement field described by Equations 2, due to 
the assumption of constant axial displacement 
through-the-thickness. However, Saint-Venant stiff-

 
Figure 1.  Thin-walled beam and its general cross-section.

Figure 2. Displacement components in global and local refer-
ence systems.



ness is essential for open thin-walled beams to with-
stand uniform torsion. Corresponding strain SV

zsγ  is 
assumed to be proportional to the derivative of the 
torsion angle θ with respect to longitudinal axis z, 
according to the expression (Laudiero & Zaccaria 
1988): 

( )
n

SV
zs x

z
z

d
d2 θ

=γ  (6) 

 
The model can be further simplified by making 

assumptions on stress components. First of all, due 
to the assumption of rigid cross-section, in-plane 
normal and shear stresses (σs, σn, τns) cannot be de-
termined explicitly, but they are negligible with re-
spect to other components. 

Moreover, due to small thickness of thin-walled 
beam, shear stress τzn is also negligible. Hence, only 
stresses σz and τzs are considered in the present 
model, together with shear stress SV

zsτ . Stress com-
ponents are related to corresponding strains through 
constitutive laws, i.e.: 

z
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where superscript i refers to i-th layer and Ez and Gzs 
are secant values (in non linear range) of longitudi-
nal Young modulus and transverse shear modulus, 
respectively. Considering different materials through 
the wall thickness, corresponding stress components, 
σz, τzs and SV

zsτ , are obtained through individual con-
stitutive laws. 

3 NUMERICAL MODEL 

3.1 The finite element model 
The application of the finite element method re-
quires a proper discretization of geometric domain. 
In the proposed model, discretization is performed 
following two main phases: first, thin-walled beam 
is divided along the longitudinal direction in sub-
elements, by using a number of reference cross sec-
tions; secondly, general transverse  cross-section is 
discretized into a number of straight segments de-
fined between couples of nodes (Fig. 3). Nodes are 
forced to be located where some kind of discontinu-
ity arises: geometrical discontinuity (first derivative 
of curvilinear coordinate and wall thickness), mate-
rial discontinuity and where three or more walls in-
tersect each other. Additional intermediate nodes are 
also considered in order to improve the solution. 
Joining the corresponding nodes of different trans-
verse sections, a nodal line is obtained. The single 

finite element, called panel, is defined as the portion 
of wall between two adjacent sections and two adja-
cent nodal lines (Fig. 4). A linear variation of longi-
tudinal displacement w(s,z) is considered along the 
cross-section curvilinear coordinate s, whereas quad-
ratic approximation is adopted along z-direction 
(Bottoni et al. 2006).  

Moreover, quadratic functions are used for in-
plane cross-sectional displacements ξ(z), η(z), θ(z). 
The resulting finite element has 6 nodes and 15 dofs 
(Fig. 5): 6 for axial displacements and 9 for rigid 
body transverse displacements of three involved 
cross-sections. 

 All finite elements whose edges are located in a 
common transverse section share the same rigid 
body displacements. Hence, displacement functions 
providing rigid body displacements of cross-sections 
can be written in the form: 

( ) ( )ξN zz T=ξ  (8a) 

( ) ( )ηN zz T=η  (8b) 

( ) ( )θN zz T=θ  (8c) 

where vectors: 

[ ]321 ξξξ= ,,Tξ ,     [ ]321 ηηη= ,,Tη ,  

[ ]321 θθθ= ,,Tθ  (9) 

contain rigid body dofs while vector NT=[N1, N2, N3] 
contains quadratic shape functions. Moreover, axial 
displacement is given by: 

( ) ( )ΦN z,sz,sw T
φ=  (10) 

where vector: 

[ ]232221131211 φφφφφφ= ,,,,,TΦ  (11) 

contains axial dofs, while shape functions collected 
in vector )( z,sT

φN  are defined by the composition of 
N(z) and linear Lagrangean interpolation functions 
MT(s)=[M1(s), M2(s)] according to expression: 

( ) ( ) ( ) ( ) ( )][ 21 zsM,zsMz,s TTT NNN ⋅⋅=φ  (12) 

 
Figure 3. Nodes on transverse cross-section and linear ap-
proximation for axial displacements. 



From Equations 5, 8, strain components can then 
be written as: 
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where prime stands for partial derivative with re-
spect to z and coefficients αx=dx/ds, αy=dy/ds,  
r=xdy−ydx are constant for each finite element. 
Finally, Saint Venant shear strains are given by (see 
Equation 6): 

( ) ( ) ( ) nn
SV
zs xzxzz,s θN′=θ′=γ 22  (14) 

3.2 Equilibrium conditions for the finite element 
Equilibrium conditions for the single finite element 
can be written by the principle of virtual displace-
ments. Making use of Equations 5, 6 and 7, inner 
virtual work can be written as: 
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where eq
zE , eq

zsG  and eq,SV
zsG  are equivalent moduli, 

taking into account single contributions of each ma-
terial through the finite element thickness: 
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Substitution of Equations 13, 14 into Equation 15, 
yields: 
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where vector Ue
T = [ξT, ηT, θT, ΦT] collects all dofs 

of the element and Ke is the corresponding stiffness 
matrix. Moreover, external virtual work is given by: 
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where: 
– qx, qy, mt are external distributed loads corre-

sponding to rigid body cross-section displace-
ments ξ(z), η(z), θ(z), 

– Qx
T=[Qx1, Qx2, Qx3], Qy

T=[Qy1, Qy2, Qy3], 
Mt

T=[Mt1, Mt2, Mt3] are vectors of generalized 
applied forces associated with dofs ξ, η, θ. 

Substituting Equations 8 in Equation 18 yields: 
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where: 
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Figure 4. Discretization of the beam. Longitudinal and cross-
sectional subdivision.  

Figure 5. Finite element of panel type and corresponding dofs.



( ) zmz
eL

t d∫=θ Nt  (20) 

and: 

Fe
T = [tξ+Qx, tη+Qy, tθ+Mt, 0] (21) 
Setting e

ve
e
vi LL δ=δ , under the assumption of arbi-

trary values of variations δξ, δη, δθ, for  0 ≤ z ≤ Le, 
Equations 17 and 19 yield: 

eee FUK =  (22) 

stating equilibrium condition for the general finite 
element. 

4 SOLUTION METHOD IN THE NON-LINEAR 
RANGE  

When a reinforced concrete structure in the cracked 
range is considered, Equation 22 gives a non linear 
system of equations due to non linear behavior of 
concrete. A Newton-Raphson method has then been 
adopted to solve the non-linear FE problem. The so-
lution algorithm originally proposed by Batoz & 
Dhatt (1979) has been used. This method enables 
step-by-step controlling of a single, monotonically 
growing dof, while shape of external load distribu-
tion is defined separately. All unconstrained dofs are 
unknown, except for the displacement component 
adopted as the control parameter; increment of load 
multiplier λ is also unknown. With this method, sof-
tening branches in load-displacement response (as in 
the case of crack formation in concrete under ten-
sion) can be correctly followed without imposition 
of the deformed shape to the structural element.  

First, equation system stating equilibrium for the 
linearized Newton-Raphson problem is written. 
Then, in the usual way, partitioning of the system is 
operated, thus imposing boundary conditions on dis-
placements. The following reduced equation system 
of order m can be obtained, being m the number of 
unconstrained dofs and with i indicating general 
Newton-Raphson iteration:  

iiiii
ˆ CRFUK ++λ= dd   (23) 

where Ki is the structural tangent  matrix, F̂  a con-
stant vector determining the shape of external load 
distribution, Ri the vector of residual forces and Ci a 
vector originating from system partitioning. More-
over, dUi and dλi are variations of dofs vector and 
load multiplier, respectively. For each Newton-
Raphson iteration i, the following equation system 
can be derived from Equation 23:  

ba
ii UUU +λ= dd   (24) 

where: 

FKU ˆ
i

a 1−= ,  ( )iii
b CRKU += −1   (25a,b) 

Equation system 24 must be solved for dλi and 
dUi, for a given step increment uΔ  of the controlled 
dof. This is done easily, if j-th equation (correspond-
ing to controlled dof) is extracted, stating: 
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Increment uΔ  is imposed at the first iteration, as 
evidenced by Equation 26. 

5 MODELIZATION OF PRESTRESSED 
REINFORCED CONCRETE 

5.1 Constitutive laws for concrete 
In the present study, concrete behavior in tension is 
considered linear up to tensile strength with soften-
ing  branch after the peak stress. Shear deformability 
is considered purely elastic; beam is then supposed 
not to crack under shear stresses for service load lev-
els.  

A smeared crack law (Reinhardt & Yankelewsky 
1989) has then been used for concrete in tension. 
The law is linear with elastic modulus Ec up to 
cracking occurring at point [εct, fct]; softening branch 
is described by the following relationship between 
concrete stress σc and strain εc:  
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where εc0 is value of strain where stress becomes 
zero. The complete constitutive law in tension (Fig. 
6) is obtained by shifting Equation 27 to the right of 
the quantity εct. Strain with zero value for stress be-
comes εu = εc0 + εct. 

In compression a linear law with elastic modulus 
Ec is adopted, since service loads are considered. 

5.2 Modelization of  bars and pretensioning strands 
For both pretensioning strands and steel bars, a lin-
ear elastic behavior is assumed. In the finite element 
model, the presence of ordinary steel bars is mod-
eled as layers made of a different material. On the 
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Figure 6. Reinhardt & Yankelewsky law (1988) for concrete in 
tension.



contrary, strands are modeled as a unique layer with 
different width.  

Pretensioning is then introduced in the form of 
concentrated forces applied on strands at beam ex-
tremities.  

6 RESULTS 

Results of the non linear analysis on a simply sup-
ported, prestressed thin-walled beam are reported. 
Beam length is 24 m and cross-section is depicted in 
Figure 7. For beam geometry, see also Di Prisco et 
al. (1990). A uniformly distributed load q along 
beam length is applied. Overall pretensioning force 
is set to 2180 kN. Material parameters are listed in 
Table 1. 

Modelization of the cross-section is shown in 
Figure 8; thickness of branches and main nodes of 
discretization are reported. Additional nodes have 
then been placed for bars and strands, as well as 
along section branches to improve the solution (see 
Fig. 10). Prestress load has been introduced from the 
beginning together with beam weight. 
In a second stage, vertical load has been incre-
mented by controlling increase of beam deflection, 
following the method described in Section 4; analy-
sis has been carried out up to the attainment of com-
pression strains (0.8‰) corresponding to about 40% 
of compressive strength (conventional limit of linear 
elastic behaviour). Cracking first occurs for a dis-
tributed load of about 8 kN/m. By increasing load 
level, beam stiffness in bending reduces signifi-
cantly, as shown by slope decrease of the load-
deflection curve in Figure 9. After an intermediate 
phase with cracking extending from middle-span, 
curve becomes approximatively linear. Due to the 
presence of prestress load, cracking is revealed by a 
very gradual change in stiffness, without softening 
branches as in the case of ordinary steel reinforce-
ment only.  

Figures 10a-d show the evolution of cracked re-
gion with load increase, expanding from middle-
span. Black points indicate Gauss points where 

strain overcomes the cracking limit εct; moreover, 
black line indicates the neutral axis position (null 
axial strain). Having adopted a local model, strain 
localization in tension could be expected. Neverthe-
less, Figures 10 indicate a well distributed cracking 
state. 

shows strain profile for three different load levels 
at the cross-section 48 cm far from middle-span. 
Moreover, for the same section, in Figure 12 normal 
stresses in concrete are reported, for different load 
levels. Softening behaviour of concrete in tension 
due to cracking in the bottom portion of the beam is 
shown.  

7 CONCLUSIONS 

A new finite element model is developed for non lin-
ear behaviour of concrete under service loads.  

 
Figure 7. Beam cross-section with prestressing and ordinary re-
inforcement. 

 
Figure 8. Modeling of cross-section: coordinates of main points 
(right) and thickness of branches (left). 

Table 1: Material properties. ______________________________________________ 
Property               Symbol     Value  Unit ______________________________________________ 
Elastic modulus of concrete   Ec    40   GPa 
Shear modulus of concrete   Gc   17.4    GPa 
Tensile strength of concrete   fct   3.7   MPa 
Ultimate strain of concrete    εu   0.5‰ GPa  
Elastic modulus of steel strands  Esp  196   GPa 
Elastic modulus of steel bars   Es   206   GPa 
Shear modulus of steel strands  Esp  75.4  GPa 
Shear modulus of steel bars   Es   79.2  GPa ______________________________________________ 
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Figure 9. Distributed load vs. deflection. 



Cross-sections are assumed rigid in their own 
planes, so reducing the number of dofs. Shear elastic 
deformability is considered into the model, though 
inelastic deformability due to cracking is only taken 
into account for normal strains. A smeared cracked 
model describes the average damaging behaviour. 

In a future study, a non local constitutive model 
will be used to model cracking behaviour of con-
crete (Pijaudier-Cabot & Bažant 1986, Bažant & 
Cedolin 1991). Non local models are typically used 
as regularization techniques when strain localization 
occur in numerical analysis.  

Moreover, the model will be extended to cover the 
case of long-term loadings, including creep deforma-

tion of concrete and steel relaxation of prestressing 
strands. Since membrane deformation of individual 
panels only are considered (no out-of-plane bend-
ing), introduction of creep deformation according to 
solidification theory is much more effective and 
computationally efficient with respect to ordinary 
shell elements. 
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Figure 10.Cracking configuration and line of neutral axes at 
different loading levels. 
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Figure 11. Strains close to middle-span for different load lev-
els. 
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Figure 12. Stress distributions close to middle-span for differ-
ent load levels.
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