
1 INRODUCTION  

The research of a failure criterion for concrete under 
multi-axial stresses is a very important task because 
of its numerous civil engineering applications.  
Nowadays, several concrete failure tests under mul-
tiaxial stresses are available and many theoretical 
failure criteria have been proposed. These criteria, 
on the other hand, have been formulated, as a rule, 
by modifying failure conditions concerning other 
materials, (e.g. the Coulomb criterion) to the con-
crete. Among all the criteria available in literature, 
the Rankine criterion (Van Mier, 1997, Jiràsek & 
Bazant, 2001, McClintock & Argon, 1966) seems to 
have a physical basis for the concrete. According to 
this criterion, in fact, concrete fails in brittle manner 
as soon as the maximum principal stress exceeds the 
concrete tensile strength. It is well known, on the 
other hand, that the strict application of the Rankine 
criterion could imply that for a compressed concrete 
specimen failure could never occur because no ten-
sile stress develops. On the contrary, brittle failures 
are ob-served also in compressive regimes. Tensile 
stresses, in fact, can arise at microscopic level and 
produce failures. The concrete is a multiscale mate-
rial consisting of aggregates embedded in a matrix 
of binder, the hardened cement paste (Van Mier, 
1997). Further, the hardened cement paste is weak-
ened by a capillary porosity, produced by evapora-
tion of the water in excess. Diffused pores are visi-
ble with the electronic microscope: they have 
irregular shape and are spread up among the needles 

of calcium silicate hydrates, the structure of the 
hardened cement paste. When concrete is loaded, 
high stress concentrations take place at microscopic 
level around these small cavities: they produce mi-
cro cracks that propagate across the hardened ce-
ment paste till they become visible at macroscopic 
level. 

 

 
Figure 1. Multiscale micro-geometry of the concrete. 

 
Many contributions are available in literature 

which use Micromechanics to estimate the mechani-
cal properties of the concrete e.g. the elastic moduli 
(Yang & Huang, 1996). In line with this approach, 
ere, two steps homogenization technique is used to 
evaluate the stresses supported by the cement paste 
when the concrete is loaded (Fig.1). In the first step, 
the global moduli of the mortar are evaluated. In the 
second step these moduli are used to estimate the 
behaviour of the concrete made by the mortar and 
the gravel. Combining these two results, obtained at 
two different scales, we can evaluate the average 
stresses in the hardened cement paste. These mean 
stresses represent the asymptotic stress state for the 
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local stresses acting around the small pores diffused 
in the hardened cement paste. These local stresses 
are responsible of the failure in the concrete: at mi-
croscopic level collapse occurs when the maximum 
tensile stress around the pores reaches the tensile 
strength of the hardened cement paste. 

In the above exposed framework a biaxial failure 
contour is analytically obtained for concrete. The 
comparison of this theoretical criterion with several 
experimental results seems to be satisfying. 

2 2 STRESS CONCENTRATIONS AROUND 
THE PORES DIFFUSED IN THE HARDENED 
CEMENT PASTE  

Concrete can be considered a material homogeneous 
and isotropic at average level. Mean stresses in the 
various components can be obtained by using the so 
called mixtures law and the elasticity equations. 
(Nemat-Nasser & Hori, 1999). In this formulation 
strong simplifications can be obtained by assuming 
the same average Poisson ratios for the components 
of the concrete, as approximately it does occur. In 
this case, as stated beforehand, we consider a two 
steps homogenization procedure: in the first step, the 
mortar is made by sand and hardened cement paste 
while, in the second step, the concrete is composed 
by mortar and gravel. Thus we get: 
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where E is the Young modulus and the indices c, g, 
m, s, p indicate concrete, gravel, mortar, sand and 
cement paste respectively. The elastic moduli of the 
constituents and of the concrete are related; in fact 
the elastic modulus of the mortar must be the result 
of an homogenization process in which the constitu-
ents are the sand and the cement paste. In the same 
way, the elastic modulus of the concrete is obtained 
from the homogenization of mortar and gravel. 
Therefore Ec and Em can be obtained by using a mi-
cromechanical models and must satisfy the Hashin-
Shtrikman bounds which depend on the geometry 
and the volume fraction of the constituents (Nemat-

Nasser & Hori, 1999). If such a constraint is not sat-
isfied, i.e. Ec and Em are chosen arbitrarily, the re-
sults obtained by using the proposed failure model 
can be physically uncorrected since the elastic 
moduli are meaningless. Therefore in eqs. (3a) and 
(3b), concrete and mortar moduli will be suitably 
chosen by using micromechanics and accurate test 
results in order to effectively represent the elasticity 
of the composite materials. Strong stress concentra-
tion occurs around the small cavities spread up in-
side the hardened cement paste. In order to define 
these local stresses can be assumed that the mean 
stress inside the hardened cement paste is the as-
ymptotic stress acting at large distance from the sin-
gle pore. Thus, when the concrete is, for instance, 
axially loaded by the uniform stresses σz, and the 
mean stress σz

P takes place inside the hardened ce-
ment paste, by assuming for the pore a spherical 
shape, the local stress around the cavity is 
(McClintock & Argon, 1966): 
at the pole Pz (see Fig.2): 
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A(ν), B(ν), C(ν) depend on the Poisson ratio ν of the 
hardened cement paste and are given by: 
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where ν indicates the local Poisson ratio of the hard-
ened cement paste without pores, larger than the av-
erage Poisson ratio ν .  
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Figure 2. Local stress around the spherical pore under an as-
ymptotic compressive stress. 



 
Actually, the small pores spread up in the hardened 
cement paste have irregular shape. Pores of irregular 
shape in plane elasticity can be represented by small 
elliptic holes having various orientation. High stress 
concentrations occur on the boundaries of elliptic 
cavities with the major axis orthogonal to the direc-
tion of the applied uniaxial tensile stress. The stress 
component σy, acting at the end of the major axis, in-
creases strongly while the other ones hold almost the 
same (Fig.3). 

 
Figure 3 Stress concentrations around an elliptic cavity 
 

At the end of the minor axis the circumferential 
stress σx changes sign but its intensity almost does 
not increase. Thus, taking into account the irregular 
shape of the pores diffused in the hardened cement 
paste, we assume that the long ellipsoids pores with 
the major axis orthogonal to the applied tensile 
stress, will exhibit the highest stress concentration 
and will be the first to fail. To the authors’ knowl-
edge, there is no simple analytical solution able to 
describe the local stress field in the neighbourhood 
of an ellipsoidal cavity. Thus, for sake of simplicity, 
we continue to use the field equations describing 
stresses occurring along the boundary of the spheri-
cal pore but increasing the intensity of the stress 
component directed as the applied tension. Thus, in-
troducing the intensity factor kB to take into account 
the irregular shape of the cavity, we modify the ex-
pression of the local stress field (3a) and (3b) con-
cerning the spherical hole in the following way: 
at the pole Pz: 
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but, at the equator Ez: 
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3 THE FAILURE CONDITION 

Failure occurs when the maximum principal tensile 
stress around the capillary pores of the hardened 
cement paste reaches its tensile strength. This condi-
tion, even if of local character, concerns all the cavi-
ties continuously diffused in the hardened cement 
paste and, when reached, produces the macroscopic 
destruction of the binder and, accordingly, the con-
crete failure. 
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Figure 4 Uniaxial tension and uniaxial compression  
 

Under increasing tensile stress acting on the con-
crete, zE

ϕϕσ , acting at the poles Py and Px, i.e. along 
the equatorial circle Ez of the cavities, can reach the 
tensile strength of the hardened paste and produce 
failure. Cracks are thus orthogonal to the zE

ϕϕσ , i.e. 
orthogonal to the applied tensile stress. Concrete in 
uniaxial tension thus fails when  

, 2( )zEp c
rt loc B rtf k B K fϕϕσ ν= =  (5) 

where ,
p

rt locf  and c
rtf  indicate the tensile strengths of 

the hardened cement paste and concrete respec-
tively. Conversely, in presence of uniform compres-
sion σz, the tensile strength of the cement paste is 
reached at poles Pz of the of the cavities. In this case 
the failure condition is: 

, 2 . ( )p c
rt loc rc unf A K fν= − ⋅  (6) 

Cracks will now be parallel to the compression 
stress σz acting on the concrete.  

By tests, in the case of uniform uniaxial compres-
sion, cracks turn out parallel to the direction of the 
applied compression while, in the case of uniaxial 
tension, cracks are orthogonal to the applied tensile 
stress. These results are captured by the present 
model of concrete failure because it takes into ac-
count the different local failures occurring at the 
pole or at the equator of the pores diffused in the 
cement paste. 

At the same value of the stress acting on the con-
crete, the maximum local tensile stress, produced in 
the binder when the concrete is in uniaxial compres-
sion, is much lower than the maximum local tensile 
stress occurring when the concrete is in uniaxial ten-
sion. Thus, the intensity of the stress applied to the 



concrete, able to produce compression failure, will 
be much higher than the stress intensity required to 
produce tensile failure. The proposed failure model 
is therefore able to explain why the tensile concrete 
strength is much lower than the compression one. 

In order to validate the proposed concrete failure 
model, on the other hand, it is required that the 
maximum local tensile stress, corresponding to the 
concrete compression failure, is equal to the maxi-
mum local tensile stress occurring in the concrete in 
uniaxial tension. Thus we have the condition 
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For normal strength concrete (NC), the uniform 
compression strength .

c
rc unf  is lower than the stan-

dard cylindrical compression strength and we can 
write  

.
c c
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where γ  depends on the used restraint at the speci-
men boundary (Van Mier, 1997) and can be assumed 
equal to 0,85÷0,90. Further, the tensile concrete 
strength c

rtf  can be evaluated in terms of the cylin-
drical compression strength c

rcf  with: 
c c

rt rcf fβ=  (10) 

where the constant β is about 0,10 (Van Mier, 1997). 
Thus we get 
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Taking into account the range of values of the 
β and γ  the concentration factor kB is about 2,5.  

We can also obtain the local tensile strength of 
the hardened cement paste, in fact 

, 2( )p c
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and we get, by assuming for the value of the local 
Poisson ratio of the hardened cement paste ν = 0,25,  

, 3,75p c
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The local strength of the hardened cement paste, 
i.e. the tensile strength of the binder not weakened 
by the diffused porosity, is much higher than the 
tensile concrete strength.  

4 BIAXIAL FAILURE CONTOUR FOR THE 
CONCRETE 

Biaxial stress states are very frequent. The biaxial 
stress regimes are of four different kinds: 1. com-
pression-compression (Bcc) 2. compression-traction 
(Bct), 3, traction-compression (Btc) 4. traction-
traction (Btt). We will examine the corresponding 
possible concrete failures.  

4.1 Compression - compression (Bcc) 

The uniform vertical compression zσ  is applied on 
the concrete perpendicular to the horizontal com-
pression yσ (Fig.5).  
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Figure 5. The compression – compression regime 
 
If zc  e and yc  are compressions, then  

y ycσ = −  z zcσ = −  (14) 

with zc  ≥  yc . The asymptotic stresses acting at 
large distance from the pore in the hardened cement 
paste are: 

2 z zc Kσ ∞ = −  2 y yc Kσ ∞ = −  0xσ ∞ =  (14’) 

to which correspond the local stresses: 
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Taking into account the sign of the quantities 
A(ν), B(ν) e C(ν), the higher tensile stress is reached 
by the zP

ϑϑσ  at the pole Pz of the pore. On the con-
trary, with cy dominating, the higher tensile stress is 
produced by the yP

ϑϑσ  at the pole Py (Fig.6). The fail-
ure condition will be attained when firstly one of the 
following conditions, linear in cy and cz is satisfied: 
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according to cz ≥ cy or cy ≥ cz. 
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Figure 6. Local stresses around the pores in the Bcc regime 

 
In Figure 12 the half lines AK and BK are the 

failure contours corresponding to eqs.(16) e (16’). 
As a rule, A(ν)<0 e C(ν)>0 when ν>0,20. Thus, the 
biaxial concrete compression strength is larger than 
the uniaxial strength. Particularly, when: 

y z biassc c c= =  (18) 

we have the concrete strength under equi-biaxial 
compressions 
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For instance, with ν = 0,25, eq. (20) gives: 

, . ,1,125c c
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4.2 Compression-tension (Bct) e tension-
compression(Btc) 

In this case, the uniform vertical compression σz is 
applied on the concrete perpendicular to the horizon-
tal tensile stress σy (Fig.7) and we have 

 z zcσ = −   y ytσ =  (21) 

where cz and ty are the intensities of the applied 
stresses. 
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Figure 7. The (Bct) and the (Btc) regimes 

 
At the poles of the cavities diffused in the hard-

ened cement paste we have the stresses 
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2[  ( ) ( ) ]xP
B z yK k B c C tφφσ ν ν= − +

2[  ( ) ( ) ]xP
z B yK C c k B tθθσ ν ν= − +  

Thus, with cz dominating and taking into account 
the values of the coefficients A(ν), B(ν) e C(ν), the 
higher local tensile stress is reached at the pole Pz by 
the component zP

φφσ .(Fig.8). Thus the failure condi-
tion is now: 
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represented in Figure 12 by the straight line BP.  
Analogously, in the case of traction – compres-

sion, we have 
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Figure 8. Local stresses around the pores in the (Bct)/(Btc) re-
gimes 



The straight lines BP and AQ of Figure 12 repre-
sent the failure conditions (24) and (24’) for the 
compression- tension and tension- compression re-
gimes. Thus, when a small lateral tensile component 
is applied, the strength decreases significantly in the 
compressive direction. When the two stresses with 
opposite sign have the same intensity, as it occurs in 
the case of pure shear (Fig.9), 

 z orσ τ= −   y orσ τ=  (25) 

the failure shear stress is: 
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Figure 9. The pure shear regime 

4.3 Traction - traction(Btt) 
The mean stresses acting on the concrete are the ten-
sile stresses (Fig.10) 

 z ztσ =   y ytσ =  (27) 
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Figure 10. The tension – tension regime 

Consequently, the mean stresses acting on the 
hardened cement paste are  

2 z zt Kσ ∞ =  2 y yt Kσ ∞ =  (28) 

and the local stresses around the pores are 
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with tz dominating on tz, the higher tensile stress is 
reached by the component xP

φφσ  and occurs at the 
pole Px (Fig.11). The failure condition thus is 
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Figure 11 Local stresses around the pores in the (Btt) regime 
 
Eqs. (30) and (30’) , more clearly, become 
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It is relevant the case of the uniform equi-biaxial 
tensile stress: 

z y biasst t t= =  (32) 

Thus we get: 
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Eqs. (31) e (31’) respectively correspond to the 
segments QW e PW of Figure 12.  

Thus the equi-biaxial tensile strength has to be 
lower than the uniaxial tensile strength. Each of the 
failure conditions (31), (31’), (24), (24’), (17), con-
cerning the different stress regimes of the concrete, 
is linear in the components σy, σz and define convex 
sub-regions in the σy, σz plane. The intersections of 
all these convex regions define the convex safe re-
gion in the biaxial stress components σy, σz whose 
boundary is the biaxial failure contour of the con-
crete (Fig.12). 
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Figure 12. The obtained concrete biaxial failure contour 

5 CONCLUSIONS 

Figure 13 gives the biaxial failure contour for a con-
crete obtained experimentally by (Kupfer, 1973). 
Other failure contours have similar behaviour (Van 
Mier, 1997). It is immediate to recognize the essen-
tial good agreement of these test results with the 
contours corresponding to the proposed failure 
model of the concrete. In the compression – com-
pression regime, when the ratio between the two 
principal stresses is about 0.5, the agreement is less 
satisfying since in this case the test results seem to 
be strongly influenced by the restraints used at the 
specimen boundary, as shown in Figure 3.84 of (Van 
Mier, 1997). 

 
Figure 13. Failure surface of the concrete in biaxial stress con-
ditions obtained by (Kupfer, 1973) 
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