
1 INTRODUCTION 

Non-linear finite element analysis is becoming a 
common tool for studying the behavior of reinforced 
concrete structures. Over the past years, techniques 
for non-linear analysis have been enhanced signifi-
cantly via improved solution procedures, extended 
finite element techniques and increased robustness 
of constitutive models. Nevertheless, problems re-
main, especially when cracking and crushing in real-
world structures is analyzed. The load-displacement 
response of RC beams, plates, shells and spatial 
structures often shows a number of local peaks and 
snap-backs or valleys associated with brittle crack-
ing [1] and subsequent stress redistribution. In simu-
lating this behavior, one has to use softening models. 
Unfortunately, this involves negative tangent stiff-
ness which may lead to numerical instability and di-
vergence of the incremental-iterative procedure. To 
try and solve such problems, users have to resort to 
arc-length or indirect control schemes [2]. For prac-
ticing engineers this is cumbersome and often inade-
quate when the bifurcations are multiple, the peaks 
irregular or the snap-backs sharp [3]. These prob-
lems are independent of the type of smeared crack 
formulation adopted, either decomposed-strain, to-
tal-strain, damage or plasticity based crack models. 
In this contribution, an alternative method is adopted 
[4]. The softening diagram of negative slope is re-
placed by a saw-tooth diagram of positive slopes. 
The incremental-iterative Newton method is re-
placed by a series of linear analyses using a special 
scaling technique with subsequent stiffness/strength 
reduction per critical element. It will be shown that 

this ‘event-by-event’ strategy is robust and reliable. 
The advantage is that there is no such thing as ‘nega-
tive incremental stiffness’, as the secant linear (saw-
tooth) stiffness is always positive. The analysis al-
ways ‘converges’. Mesh-size objectivity is achieved 
by keeping the fracture energy invariant. 

In the paper, details are provided concerning the 
saw-tooth implementation of the basic materials in 
RC structures, namely concrete and steel both in ten-
sion and compression. Subsequently, various rein-
forced structures are considered: the reinforced ten-
sion-pull specimen, two simply supported deep 
beams, and one deep beam on three supports. In all 
cases, the response shows local peaks and snap-
backs associated with the subsequent development 
of primary cracks starting from the rebar. Compari-
sons between incremental-iterative solutions and se-
quentially linear solutions are given and the behav-
iour is interpreted in terms of crack spacing and 
crack width. The model is demonstrated to be stable 
and robust and therefore appealing to practising RC 
engineers. 

2 OVERALL EVENT-BY-EVENT PROCEDURE 

The locally brittle snap-type response of many RC 
structures inspired the idea to capture these brittle 
events directly rather than trying to iterate around 
them in a Newton-Raphson scheme. A critical event 
is traced and subsequently a secant restart is made 
from the origin for tracing the next critical event. 
Hence, the procedure is sequential rather than in-
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cremental. The sequence of critical ‘events’ governs 
the load-displacement response. To this aim, the sof-
tening diagram is replaced by a saw-tooth curve and 
linear analyses are carried out sequentially [4]. The 
global procedure is as follows. The structure is dis-
cretized using standard elastic continuum elements. 
Young’s modulus, Poisson’s ratio and initial 
strength are assigned to the elements. Subsequently, 
the following steps are sequentially carried out: 
 Add the external load as a unit load. 
 Perform a linear elastic analysis. 
 Extract the ‘critical element’ from the results. The 

‘critical element’ is the element for which the 
stress level divided by its current strength is the 
highest in the whole structure.  

 Calculate the ratio between the strength and the 
stress level in the critical element: this ratio pro-
vides the ‘global load factor’. The present solu-
tion step is obtained rescaling the ‘unit load elas-
tic solution’ times the ‘global load factor’. 

 Increase the damage in the critical element by re-
ducing its stiffness and strength, i.e. Young’s 
modulus E and tensile strength ft, according to a 
saw-tooth constitutive law as described in the 
next section. 

 Repeat the previous steps for the new configura-
tion, i.e. re-run a linear analysis for the structure 
in which E and ft of the previous critical element 
have been reduced. Trace the next critical saw-
tooth in some element, repeat this process till the 
damage has spread into the structure to the de-
sired level. 
The way in which the stiffness and strength of the 

critical elements are progressively reduced consti-
tutes the essence of the model. In other words, it is 
necessary to provide a saw-tooth approximation of 
the constitutive stress-strain relation [4-6]. In the 
present paper a new generalized tooth size approach 
is presented, which allows for a straightforward uni-
fication of saw tooth constitutive laws for concrete 
in tension, concrete in compression and steel in ten-
sion and compression. 
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Figure 1. MC90 cohesive law (bilinear); linear softening and 
nonlinear softening with equal strength and fracture energy. 

 

3 SAW-TOOTH CONSTITUTIVE LAWS FOR 
RC 

3.1 Saw-Tooth Laws for Concrete in Tension 
The behavior of concrete in tension is correctly de-
scribed by the Model Code 90 (MC90) bilinear rela-
tion [6]. A linear relation can be also adopted (Fig. 
1), which preserves the tensile strength and the frac-
ture energy, though this choice turns out to overes-
timate the immediate post peak behavior, and to un-
derestimate the ultimate strain.  

3.2 Saw-Tooth Nonlinear Tension Softening 
The cohesive relation of the MC90 provides the ten-
sile stress σ transmitted by the crack as a function of 
the crack opening w in the following way: 
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The crack opening w1 and the ultimate crack 
opening wc depend of the tensile strength and frac-
ture energy: 
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In absence of experimental data, the concrete 
fracture energy can be estimated as a function of the 
characteristic compressive strength fck: 
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Both αF and the basic fracture energy of concrete 
GF0 are functions of the maximum aggregate size. 

The MC90 bilinear expression has been recently 
modified by Belletti, Cerioni and Iori [7] in order to 
have a continuous function, which is better for our 
purpose. This expression reads as follows: 
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where δ=1.75 is a parameter which guarantees 
that the area underneath the curve (i.e. the fracture 
energy) remains unchanged. 

The following step is to implement the above co-
hesive curve into a smeared-crack total strain formu-
lation. Therefore, it is necessary to smear the crack 



opening w over the crack band width or element size 
h, and to express the crack strain as the difference 
between the total strain and the elastic part as fol-
lows: 
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Eq. (5) can be substituted in eq. (4), providing the 
following quadratic expression: 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅
+⎟

⎠
⎞

⎜
⎝
⎛ −⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

−

−
−=

h
w

Ew
w

1

E1f
1

c

1
t

δ
σε

δ

σε
σ . (6) 

After some algebraic manipulation, and since 
only the lower root of the above equation is physi-
cally meaningful, the stress strain relation in terms 
of total strain is the following: 
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with: 
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Eq. (7) can now be adopted as a ‘mother curve’ 

for the construction of the saw tooth approximation. 
Since the softening tail is nonlinear, implementa-

tion of previous saw-tooth approaches [5-6] is not 
straightforward. Therefore, a more general approach 
is proposed. The main idea is to define a narrow 
band across the ‘mother curve’, obtained by uplift-
ing and lowering the softening curve with some 
quantity proportional to the tensile strength (Fig. 2). 
The uplifted softening function will be the follow-
ing: 
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where p is a percentage of the strength. The intersec-
tion between the generic i secant elastic branch and 
the softening tail, i.e. the arbitrary tooth peak, is pro-
vided by the following equation: 
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After some algebraic manipulation, Eq. (10) can 
be solved with respect to the strain, giving again a 
quadratic expression, which provides only one 
physically meaningful solution: 
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The corresponding strength can be obtained easily 
by: 

++ ⋅= iiti
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Every time that the element is critical, according 
to the overall ‘event-by-event’ procedure, the stiff-
ness and the strength of the element must be re-
duced. The rule to apply is: 
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where fti
- is the interception of the secant stiffness 

with the lowered softening curve. This rule can be 
applied sequentially, replacing the initial softening 
mother curve by the saw-tooth approximation (Fig. 
2). 

 
Figure 2. Generic intersection with the uplifted softening curve 
and saw-tooth constitutive law. 

 
Contrarily to previous procedures [5-6], the 

height of each ripple is constant here and equal to 
twice the uplift amount. The number of teeth of the 
saw-tooth approximation is equal to the number of 
repetitions which can be performed until fti

- becomes 
negative, i.e.: 

( )0f:imax1N ti >+= −  (14) 

Note that i=N corresponds to complete damage. 
Thanks to the fact that every ripple has the same 
height, the black triangles in Fig. 2 are two-by-two 
equal to each other. Therefore, the area under the 



saw-tooth curve is always equal to the fracture en-
ergy divided by the crack band width, regardless the 
element size and/or the number of teeth in the dis-
cretization. This provides the saw-tooth approxima-
tion to be mesh-size objective. The above procedure 
is general and applies to any arbitrary total strain 
formulation. 

3.3 Saw-Tooth Laws for Concrete in Compression 
The compressive behavior of concrete can be mod-
eled by the simplified EC2 bi-linear stress-strain re-
lation [9], where εc3 = -1.750/00 and εcu3 = -3.50/00 re-
spectively, for characteristic cylindrical compressive 
strengths up to 50 MPa.  
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(b) 
Figure 3. Mother curve and saw-tooth approximations: con-
crete in compression (a); steel in compression and tension (b). 

 
This case exhibits a plastic behavior of constant 

stress level instead of a softening degradation 
(Fig.3a). Moreover, the EC2 relation is already ex-
pressed in terms of total strain. The uplifted post 
peak curve is obtained as follows: 

( ) cfp1+=+σ  (15) 

Where, fc is the compressive strength and p the 
percentage of strength uplifting. The intersection be-
tween the generic j secant elastic branch and the 
plastic plateau, provides the following equation: 

( ) cjj fp1E +=+ε  (16) 

Therefore, analogously to Eq. (11), the strain be-
comes: 
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Note that we use j to quantify the level of damage 
in compression, since i was used for damage in ten-
sion. The updated (i.e. degradated) Young’s 
modulus becomes: 
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A slightly different criterion is adopted to deter-
mine the number of teeth; in fact it turns out to be 
necessary to limit the ultimate strain of the saw-
tooth diagram according to the mother curve: 

( )

N

c

3cuN

p1
p1

E
p1f

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

+

⇒≤ εε . (19) 

Finally, the number of teeth becomes: 
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3.4 Saw-Tooth Laws for Steel in Tension and 
Compression 

An elastic perfectly plastic stress-strain diagram has 
been adopted for reinforcing steel (for tension and 
compression), according to EC2 prescriptions [9], 
see Fig. 3b. The procedure adopted is identical to the 
one used for concrete in compression, with the only 
difference that in the case of steel the same constitu-
tive law will hold for tension and compression: 

( ) yfp1+=+σ  (21) 

Where, fy is the yield strength and p the percentage 
of strength uplifting. The intersection between the 
generic i secant elastic branch and the post peak 
plastic plateau is given by the following equation: 

( ) yii fp1E +=+ε  (22) 

Therefore, analogously to Eq. (11): 
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Finally, the updated (i.e. degraded) Young’s 
modulus becomes: 
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Also in this case is necessary to limit the ultimate 
strain of the saw-tooth diagram according to the 
mother curve. Consequently, the number of teeth be-
comes: 
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Note that since the reinforcement is modeled with 
one-dimensional truss elements, the index i alone is 
sufficient to quantify the damage level in both ten-
sion and compression. 

3.5 Orthotropic Fixed Cracking 
The stepwise reduction of Young’s modulus, as de-
scribed in the previous sections, in fact implies that 
the stiffness is reduced in all directions, i.e. stepwise 
isotropic degradation occurs. Although this isotropy 
assumption may work for cases of localized fracture 
in unreinforced conditions, a substantial improve-
ment is necessary when dealing with reinforced con-
crete [10]. Then, compressive struts develop parallel 
to the cracks, and the assumption of isotropy does 
not hold. 

Therefore, in analogy to the pioneering approach 
of Rashid [11], the initial isotropic stress-strain law 
can be replaced by an orthotropic law upon crack 
formation. The axes of orthotropy are determined 
according to a condition of crack initiation, being n 
the direction normal to the crack plane, and t the di-
rection of the compressive struts (i.e. tangential to 
the crack plane). As far as the present work con-
cerns, the crack plane is kept fixed after the crack is 
nucleated.  

Referring to the plane stress situation, and to a 
local n,t coordinate system oriented along the crack 
plane, the following constitutive relation is assumed 
e.g. [12]: 
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where Ei the reduced Young’s modulus in tension 
along the n-axis and Ej the reduced Young’s 
modulus in compression along the t-axis according 
to the above sequentially linear scheme. Moreover, 
β is the so-called shear retention factor and G is the 
initial shear modulus. The equation can be rewritten 
in compact form as follows: 

ntntnt εDσ =  (27) 

Given the following transformations for the strain 
and stress vectors: 
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Eq. 27 can be easily transposed in terms of stress 
and strain global components by pre- and post-
multiplication with the transformation matrices: 
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The above orthotropic scheme combines the dif-
ferent saw-tooth laws for concrete in tension and 
compression, and was implemented in the overall 
event-by-event procedure. 

4 SOME APPLICATIONS TO REINFORCED 
CONCRETE STRUCTURES 

Various reinforced structures are considered in this 
Section. Every structure has been modeled by four-
noded plane stress elements for the concrete and 
two-noded truss elements for the reinforcement. Per-
fect bond was assumed between the concrete and re-
inforcement. All the sequentially linear analyses 
have been performed by choosing a strength range 
percentage p=10%. Comparisons are made both in 
terms of load-displacement curve and crack patterns. 

(a) 

F
(b) 

Figure 4. Load-elongation response for tension-pull specimen 
(a); crack pattern (b).  



4.1 Reinforced tension-pull specimen 
A long-embedment tension-pull specimen is consid-
ered [13]. The specimen is 600 mm long and the 
square transversal section is 68x68mm, reinforced 
with a Φ8mm rebar. The concrete parameters were: 
Young’s modulus E = 28000 MPa, Poisson’s ratio ν 
= 0.2, tensile strength fct=2.5 MPa, fracture energy 
GF = 60N/m, shear retention factor β = 0.2. The rein-
forcing bar was given a Young’s modulus Es = 
192300 MPa, and a yield stress fsy = 400 MPa. Fig. 
4a shows the numerical results obtained using the 
saw-tooth tension softening curve of Fig. 2. 

The sequentially linear analysis shows about five 
local peaks associated with the subsequent develop-
ment of five primary cracks. Beyond these peaks 
snap-backs appear automatically (Fig. 4). The be-
havior is remarkably similar to the experiment where 
vertical jumps occur due to the use of displacement-
control. Precise quantitative comparisons have not 
been made, as this would require bond-slip to be in-
cluded. The analysis also demonstrates that rein-
forcement plasticity is captured correctly, due to the 
use of the saw-tooth curve of Fig. 3b for the steel.  

4.2 Reinforced concrete deep beam 
The deep RC beams, experimentally tested by 
Braam [14], have been analyzed. Beam #13 was 
loaded in four-point bending with a span of 5m. The 
beam was 5.5m long with rectangular transverse 
cross section (300x800mm).  
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Figure 5. Comparison between experimental and numerical re-
sults for beam#13. 

 
The saw-tooth non-linear tension softening curve 

has been adopted for concrete in tension and a saw-
tooth elastic-plastic diagram for steel. Mechanical 
properties adopted for concrete are the following: 
Young’s modulus Ec = 32000 MPa, Poisson’s ratio ν 
= 0.2, tensile strength fct = 3 MPa, energy fracture 
GF = 60 N/m. The longitudinal reinforcement of 
beam#13 is constituted of 4Φ20mm, the adopted 
Young’s modulus Es = 200000 MPa and the steel 
yielding is equal to fsy = 566 MPa.  

 
                     (a)                                                 (b) 
Figure 6. Comparison between experimental crack pattern (a) 
and the contour of concrete elements which reach complete 
damage on their final saw-tooth (b) for beam#13. 

 
Fig. 5 shows the comparison between experimen-

tal and numerical results in terms of applied load 
versus midspan deflection. The aim of experimental 
tests was to investigate the behavior at the service-
ability limit state, so measurements have been 
stopped before the ultimate load was reached, while 
numerical results continue until the collapse mecha-
nism occurs due to yielding of rebars.  

Fig. 6 shows, for the zone between the point of 
application of the load and the midspan of beam#13, 
the comparison between experimental crack pattern 
and the contour of concrete elements which reach 
the complete damage, (i.e. the maximum number of 
teeth N). The localized cracking pattern accompa-
nied by local peaks and snap-backs in the load-
displacement response is reproduced correctly. 
Please note that this behavior is obtained fully auto-
matically, as a sequence of linear analyses. This ap-
proach always converges as the secant system matrix 
is always positive definite. Incremental-iterative 
nonlinear procedures would encounter difficulties or 
even divergence, especially in the early stage of brit-
tle snap-back cracking. 

4.3 Reinforced concrete deep beam on three 
supports 

DWT2 beam, tested by Leonhardt and Walther [15], 
has been chosen for the numerical simulation with 
DIANA nonlinear models and with sequentially lin-
ear analysis. This beam is a two span deep beam, of 
length 3040 mm, depth 1600 mm, and constant 
thickness equal to 100 mm, with a 360 mm thick 
supporting member in the middle (Fig. 7a).  

In the experimental test, the failure of DWT2 
deep beam occurred at the ultimate load equal to 
2462 kN, but the measurements were performed up 
to a load level of 2200 kN.  

4.3.1 NLFE analysis 
Exploiting symmetry, only one half of the beam has 
been analyzed. Fig. 7b shows that also support plat-
ens have been modeled by steel membrane elements, 
rigidly fixed to the concrete elements.  

NLFE analyses have been carried out with 
DIANA. A fixed smeared crack model, based on the 
concept of total-strain, was employed. The compres-



sion non-linearity of the concrete has been ignored. 
Only tensile cracking has been included and elastic-
plastic behavior of the reinforcement. 

 
                      (a)                                           (b) 
Figure 7. Geometrical features of DWT2 deep beam and rein-
forcement arrangement [15] (dimension in cm.) (a). Element 
mesh with details of the support platens (b). 

 
The mechanisms that transmit forces across 

cracks in RC have been modeled by an average ten-
sion-stiffening stress-strain relationship for concrete 
in tension. The usual assumption is that the stress 
carrying capacity of the reinforced concrete gradu-
ally decreases and is exhausted once the reinforce-
ment starts yielding. This implies that the ultimate 
strain wc/h of the proposed tension-stiffening curve 
equals the yield strain fy of the steel rebars. The 
nonlinear curve of Fig. 1 has been approximated as 
close as possible by adopting DIANA’s multi-linear 
option. A constant shear retention factor equal to β = 
0.2 describes the shear behavior of fixed cracks. The 
load-deflection curve obtained with the NLFE analy-
sis (Fig. 8) exhibits a very sudden drop in step 30. 
Here, the NLFE analysis diverged when a full tan-
gent stiffness scheme based on the local negative 
softening slopes was employed.  
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Figure 8., Load-deflection diagram. 

 
                      (a)                                                 (b) 
Figure 9. NLFEA: principal strain at step 29 (a) and 30 (b). 

 
                          (a)                                                 (b) 
Figure 10. NLFEA: steel stress at step 29 (a) and 30 (b). 

 
Only by using a non-consistent tangent stiffness, 

at structural level, based upon the positive secant 
stiffness of the stress-strain curves at local level, the 
analysis could be continued, though still ‘insuffi-
cient convergence’ occurred. The convergence has 
not been reached after 100 iterations in increment 
step 30. In this increment step, a crack besides the 
supporting member suddenly appears, as shown in 
Fig. 9, where the principal strains and crack patterns 
are contoured, respectively. At the same time, yield-
ing of the reinforcement Φ5 Type I occurs over the 
middle support, Fig. 10.  

 
                        (a)                                              (b) 
Figure 11. Sequentially linear analysis: concrete damaged ele-
ment at total load F=1620 kN just before snap-back (a), at 
F=752 kN in the valley of the snap-back (b).  

 
Beyond this critical point, the analysis could be 

partially continued and the cracks become wider. 
The conclusion is that the standard incremental-
iterative Newton-Raphson procedure is not capable 
of adequately catching the sudden, explosive crack-
ing that occurred in the experiment.  



4.3.2 Sequentially linear analysis 
As an alternative, the same beam with the same pa-
rameters was analyzed in the sequentially linear 
fashion. Saw-tooth approximations have been 
adopted for the non-linear tension softening curve 
for concrete in tension and for the elastic-plastic dia-
gram for steel.  

It is important to note that the experimental test  
has been carried out in load control while NLFE and 
sequentially linear analyses have been carried out in 
displacement control. For this reason the experimen-
tal curve shows a flat plateau in the zone where the 
NLFE analysis diverges. The sequentially linear 
analysis clearly reveals what happens): it shows a 
pronounced quasi-static snap-back behavior (Fig. 8) 
revealing the very sudden and brittle development of 
the major vertical crack(s) near the mid-support. 
This snap-back and also other ripples appear auto-
matically due to the scaling procedure. 
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Figure 12. Experimental crack pattern (a), sequentially linear 
analysis: concrete damaged elements (b) and steel yielded ele-
ments (c) at final load F=1930 kN.  

Fig. 12a shows the experimental crack pattern at 
failure. Figs. 12b show, in black, concrete elements 
which reach the complete damage (i.e. the maximum 
number of teeth N), respectively for deflection val-
ues equivalent to increment steps 29, 30 considered 
for NLFE analysis, and close to failure. In Fig. 12c 
yielded steel element are indicated in red. 

5 CONCLUSIONS 
A sequentially linear method for the analysis of RC 
structures has been presented. The method replaces 
softening curves of negative downward slope by 
positive secant slopes using a saw-tooth rippled 

stress-strain diagram, both for concrete in tension, 
concrete in compression and steel in tension and 
compression. Results prove that the model is capable 
of simulating brittle snap-back type of cracking 
(typical for RC) as well as ductile plastic response. 
The approach always ‘converges’ as the secant saw-
tooth stiffness is always positive definite. The ap-
proach is stable and robust and therefore appealing 
to practicing engineers. Future developments are re-
quired, e.g. towards non-proportional loading.  
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