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ABSTRACT: Coupling between creep and damage is studied in order to properly describe tertiary creep of
concrete. Evolution of damage is governed by a strain tensor through an energy norm, obtained by weighting
total and elastic strain tensor by means of a constant parameter. In fact, previous analyses show that, if coupling
between creep and damage rely upon total strains, tertiary creep occurs too early. In this study, damage model
with bilinear constitutive law and Benboudjema’s creep model are employed. Numerical simulations provide
the structural response after the introduction of the coefficient.

1 INTRODUCTION
The failure of quasi-brittle materials under mechani-
cal loading can be divided into two different parts. Ini-
tially, diffuse microcracking (damage) occurs in the
Fracture Process Zone (FPZ) due to heterogeneities
at the micro-scale. Further on micro-cracks coalesce
into a macro one yielding strain localization. As the
size of the FPZ is related to the microstructure, this
type of fracture yields a size effect extensively stud-
ied by Bǎzant since the 70s (Bažant 1976). For pre-
stressed concrete structures for which permanent load
level is large, such as in walls of nuclear power plants,
the influence of creep on the fracture process should
be taken into account. We tackled coupling between
creep and failure properties from experimental and
numerical point of view keeping in mind the perspec-
tive of size effect. Therefore, several analyses have
been performed on three point bending tests on a
notched beam of three homothetic sizes.

Coupling between creep and damage is well rec-
ognized (Mazzotti and Savoia 2003, Proust and Pons
2001, Bǎzant 1993) in literature. Experimental evi-
dences of interaction between basic creep and dam-
age has been observed on three-point bending tests
with several levels of sustained load (Loukili et al.
2001, Omar 2004). Tertiary creep yielding failure has
eventually been reached for some of the largest beams
and loaded at the highest level. For surviving beams a
residual capacity test has been performed to evaluate
peak load and fracture energy after three months of
creep at different load levels. The conclusion (Omar
et al. 2004) of this study is that the bearing capacity is
slightly influenced by creep whereas the fracture en-

ergy decrease is not negligible (up to 30%). Therefore
we observe a shift towards the LEFM response in the
size effect analysis.

Some authors proposed coupled models where con-
crete damage, humidity variation, and creep strain
are considered (see for example Hubert et al. 2001,
Ozbolt and Reinhardt 2001). In the present paper, we
develop a model to couple creep and damage, whose
parameters will be calibrated in the immediate future
by interpreting the experimental results in terms of
failure due to tertiary creep and fracture energy re-
duction.

For concrete damage, a strain-based formulation is
adopted (Badel 2001), where damage is written in
terms of a positive expression of strains, as often as-
sumed in damage models for concrete (Mazars and
Pijaudier-Cabot 1989, Di Prisco and Mazars 1996).
Creep is described through Benboudjema’s model for
basic creep (Benboudjema et al. 2005).

In the coupling model, evolution of damage is gov-
erned by a strain tensor through an energy norm, ob-
tained by weighting total and creep strain tensors by
means of a constant parameter (Mazzotti and Savoia
2002). In fact, previous analyses (Dufour et al. 2006)
show that, if coupling between creep and damage is
related to total strains, tertiary creep occurs too early
and for smaller load levels.

Numerical simulations on a simple structure, ob-
tained after having implemented the model in the fi-
nite elementCodeAster, are then reported, providing
the influence of the coupling parameter on the struc-
tural response.



2 DAMAGE MODEL
In this work, a simple isotropic damage model with
secant unloading is adopted (Badel 2001, Badel
2005). For the state of pure tension, a bilinear stress-
strain law is derived; for pure compression the law
is linear elastic. Such simplified assumption for ma-
terial behavior in compression is acceptable, because
for beams of our experimental tests collapse is caused
essentially by tension stresses, with compressed zones
of beam cross-section remaining in the linear range.
Material constants are initial elastic Young modu-
lus E0, peak strengths in tensionσt and compression
σc and softening modulusE1 (slope of the softening
branch).

Damage criterionf is defined in the following way:

f(F d) = F d − κ (1)

whereF d is the thermodynamic force and thresholdκ
is defined as:

κ = κ0 + κ1 · tr(ε) ·H(−tr(ε)) (2)

beingH the Heaviside function,κ0 andκ1 parameters
depending on material strengths and elasticity moduli
andγ a dimensionless positive constant:

γ = −E0

E1

(3)
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Throughκ1, concrete confinement is taken into ac-
count and contributes toκ only with negative bulk
strains (through Heaviside function). In case tension
strains prevail, termtr(ε) is positive andκ = κ0.

In Equation 1, thermodynamic forceF d is defined
as:

F d =
∂Φ
∂d

(6)

where free energy is easily written in the reference
system of principal strains:

Φ(ε, d) =
λ

2
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whered is damage,λ, µ are Laḿe coefficients and̂εj

is thej-th strain component in the principal reference
system.

Stresses in the principal reference system are eas-
ily derived, since principal directions for strains and

stresses coincide (for demonstration see Badel 2005):

σ̂j = λtr(ε)
[
H(−tr(ε)) +

1− d

1 + γd
H(tr(ε))

]

+ 2µε̂j

[
H(−ε̂j) +

1− d

1 + γd
H(ε̂j)

]
(8)

Satisfaction of the criterion statesf ≤ 0, and evolution
of damage state variabled is determined by Kuhn-
Tucker conditions:{

ḋ = 0 if f < 0
ḋ > 0 if f = 0

(9)

It is found that, to havef = 0, i.e. the condition for
evolution of damage, damaged is given by:

d =
1
γ

(√
1 + γ

κ
W(ε)− 1

)
(10)

with positive energyW(ε):

W(ε) =
λ

2
tr2(ε)H(tr(ε)) + µ

∑
j

ε̂2
jH(ε̂i) (11)

Reference is done to Badel 2005 for the computa-
tion of the material tangent matrix, required by the
Newton-Raphson solution method. It can be shown,
tangent matrix can be expressed in a close form.

Crack closure is also taken into account by the
model through the termsH(−ε̂j) + 1−d

1+γd
H(ε̂j) and

H(−tr(ε)) + 1−d
1+γd

H(tr(ε)). A tensile loading, for in-
stance, causes the material to damage i.e. coefficient
1−d
1+γd

6= 1; if later on the sign of the load is inverted and
the material becomes compressed, initial stiffness is
restored through the Heaviside function.

3 CREEP MODEL
In the present paper, Bemboudjema’s model for basic
creep is adopted.

The model (Benboudjema et al. 2005, Benboud-
jema 2002) attributes the phenomenon of creep to wa-
ter movement in the cement paste and is described
through the combination of hydrates elastic behavior
and water viscous behavior.

First, total strains are split into an elasto-damaged
partεe and a (basic) creep partεcr:

ε = εe + εcr (12)

Creep strains are then decomposed in reversible and
irreversible and then in their spherical and deviatoric
part, so obtaining:

εcr = εsr
cr + εsi

cr + εdr
cr + εdi

cr (13)

where strain tensorsεsr
cr, εsi

cr, εdr
cr , εdi

cr are spherical re-
versible, spherical irreversible, deviatoric reversible
and deviatoric irreversible, respectively. Components
of these four tensors are the state variables of the
creep model.



For stresses an analogous splitting is operated, with
indexess and d indicating spherical and deviatoric
part of stresses:

σ = σs + σd (14)

Parameters of the model are:

• kis → Spherical irreversible stiffness

• ηrs → Spherical reversible viscosity

• ηis → Spherical irreversible viscosity

• krd → Deviatoric reversible stiffness

• ηrd → Deviatoric reversible viscosity

• ηid → Deviatoric irreversible viscosity

Assumption of the model is that, deviatoric strains
depend only on deviatoric stresses and spherical
strains depend only on spherical stresses. Four differ-
ential equations (not reported here) describe the phys-
ical problem.

The set of differential equation of the model can
be numerically solved by assuming a linear approx-
imation in the time interval for stresses and relative
humidity. For each component of the creep strain ten-
sor (in the sense of the split given by Equation 13), an
equation of the following kind is then obtained (and
written here forεdr

cr,n):

εdr
cr,n = εdr

cr,n−1 + adr
n + bdr

n σd
n−1 + cdr

n σd
n (15)

where indexn stands forn-th timestep. By summing
Equation (15) with the analogous ones forεdi

cr, εsr
cr, εsi

cr,
general equation for updating total creep strain tensor
is obtained:

εcr,n = εcr,n−1 + An + Bnσn−1 + Cnσn (16)

MatricesBn, Cn, bdr
n , cdr

n and vectorsAdr
n , an depend

on timestep∆tn = tn − tn−1, relative humidityh and
creep strains. For their computation reference is made
to Le Pape 2004 or Benboudjema 2002.

4 COUPLING CREEP AND DAMAGE
4.1 General idea
Coupling between creep and damage is operated by
modifying strains causing damage evolution. In case
no coupling is assumed, creep strains must have no
role in structure damaging; under constant load and
even for high load levels, structure deformation would
grow with decreasing speed, eventually up to an
asymptotically finite value. Nonetheless, we know the
phenomenon of tertiary creep can take place when
load level is elevated, with deformation growing with
increasing speed and so leading structure to collapse.
It is then necessary to connect creep with material
degradation, described by damage. A possibility is
to let damage be governed by total strains; in this

case coupling would be total, and the worst case for
the structure. Previous works show, in fact, total cou-
pling tends to underestimate structure ultimate capac-
ity, (Dufour et al. 2006, Mazzotti and Savoia 2003).
However, a partial coupling could happen, if only a
portion of creep strains contributes to damage. In this
work we suppose damage evolving to be controlled by
following strain tensor̆ε, obtained by weighting total
and elasto-damaged strain tensors (see also Mazzotti
and Savoia 2002):

ε̆ = (1− β)ε + βεe (17)

which can also be written as:

ε̆ = ε− βεcr (18)

whereε, εcr andεe have the same meaning as in Equa-
tion 12 and parameterβ is constant.

Total coupling or absence of coupling are obtained
as special cases with coefficientβ assuming values of
0 and1, respectively.

4.2 Numerical procedure
A Newton-Raphson or modified Newton-Raphson
solution method is adopted, providing the typical
incremental-iterative numerical frame of non-linear
problems. The complete description of the numerical
procedure is graphically exemplified in Figure 1. In-
dexesn andi indicate timestep (increment) and gen-
eral Newton-Raphson iteration, respectively. Usually,
indexn of present timestep is not reported for sake of
simplicity andqi indicates a certain variable at itera-
tion i of the current timestepn. ToleranceωNR is the
accepted relative error on residual forces.

Update of state variables as well as computation
of stresses is done for each iteration in the single
Gauss point, where total strainsεi (and displace-
mentsUi) are supposed to be known from linearized
Newton-Raphson problem. State variables of the cou-
pled model are damaged and components of each
creep strain tensorsεsr

cr, εsi
cr, εdr

cr , εdi
cr (see Equation 13).

The numerical procedure is composed by following
steps:

1 Computation of weighted strains̆εi controlling
damage, according to Equation 17.

2 Update of damage, which is operated by first
writing damage criterionf as a function of
weighted strains and then the Kuhn-Tucker con-
dition f = 0:

1 + γ

(1 + γd)2
W (ε̆) = κ (19)

The new level of damage is then found:

dtest =
1
γ

(√
1 + γ

κ
W (ε̆)− 1

)
(20)



( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

κ
γ+

γ
= 1W11

k,itestd ε(

( )k,iik,i d,f εM =

Strains controlling damage:

Damage update: 

Stresses σi,k

Creep strains:

Instantaneous secant matrix:

dtest > di,k

di,k= dtest di,k= di,k-1

NOYES

YES

NO

10 −= n,cr,i,cr εε

1−β−= k,i,crik,i εεε(

( )k,i
dr
n

dr
n

dr
n

dr
k,i,cr ,,,f σcbaε =Δ

int
k,i

k,ik,i

d
dd

ω≤
−

−

−

1

1

∞∞
Δω≤ FR NR

Inizializing U, ε, εcr, σ

Tangent matrix

dUi, dεi , Un, εn

Residual forces R

Incremental loads ΔFn, Creep 
Matrices An ,Bn ,Cn, ( )...,, dr

n
dr
n

dr
n cba

NO

START

YES

END

n = time-step number

YES

NO

G
en

er
al

 N
ew

to
n-

R
ap

hs
on

 it
er

at
io

n 
i

In
te

rn
al

 lo
op

, i
te

ra
tio

n 
k

G
en

er
al

 ti
m

e-
st

ep
 n

Loading: Unloading:

Figure 1. Scheme of the algorithm in the frame of the
incremental-iterative procedure.

where positive energyW (ε̆) is written as:

W(ε̆) =
λ

2
tr2(ε̆)H(tr(ε)) + µ

∑
j

ˆ̆ε2
jH(ε̂j) (21)

Crack closure in Equation 21 is still controlled
by total strains by arguments of Heaviside func-
tion.

Computation of̆εi is not exact at this point. In
fact, tensor̆εi depends on stresses, which are still
unknown. Consequently, an internal loop (with
toleranceωint) is required as shown in Figure 1;
creep strains are initialized with their value at
previous time step̆εn−1. In the particular case of
total coupling no loop is necessary, sinceε̆i are
known and equal to total strainsεi.

3 Computation of stresses attn is operated by first
writing relationship between stresses and instan-
taneous strains:

σn = M(εn − εcr,n) (22)

where M at present iterationi is the instanta-
neous secant matrix, defined as:

M =
{

∂σ

∂εe

}
d=cst

(23)

After substitution of Equation 16 into Equa-
tion 22, increment of creep strains in∆tn = tn −
tn−1 is found as:

∆εcr,n = (1 + CnM)−1 · (24)

[An + Bnσn−1 + CnM(εn − εcr,n−1)]

Stressesσn at time tn are then known through
Equation 22.

4 Update of creep strains through Equation 15.

Values assumed from creep strains at this point is
not definitive, since they depend on damage through
instantaneous secant matrixM . Therefore, computa-
tional steps have to be repeated from point 1, up to
convergence in the value of damage and creep strains.
Exception is given by cases of total or absence of cou-
pling, for which no iteration is needed.

Convergence is evaluated for two successive values
of damage and then reached when:

dk − dk−1

dk−1

≤ ωint (25)

where indexk indicates iteration in the internal loop.
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Figure 2. Variation of coefficientβ for a load level fixed to70%
of instantaneous peak.

5 RESULTS
5.1 Tension test on a single finite element
First tests of the model were lead on a single bi-
linear four-noded plane stress finite element. The el-
ement was subject to a pure tension loading constant
in time. Load is quantified as a percentage of peak-
load. Results are given in term of displacements ver-
sus time in a linear scale. When possible (no collapse
occurs), finite element is tested up to 600 days (about
20 months). Temperature has been taken constant and
equal to its reference value. Computation parameters
are reported in Table 1.

In Figures 2 and 3 effect of variation of new pa-
rameterβ is observed. All curves coincide, until the
process of material damage begins and tertiary creep
starts, leading very quickly to collapse. In fact, no
structural redistribution is possible in one single ele-
ment subject to a state of pure tension. Tertiary creep
is identifiable in diagrams by the fast increase in
slope. Influence ofβ in the evolution of element de-

Table 1. Material and environmental constants adopted in nu-
merical tests.
Description Symbol Value
Young elasticity modulus [GPa] E0 31
Poisson ratio ν 0.2
Tensile strength [MPa] σt 3
Compressive strength [MPa] σc 30
Softening modulus [GPa] E1 −6
Sph. reversible stiffness [MPa] krs 6.00 · 104

Sph. irreversible stiffness [MPa] kis 3.00 · 104

Sph. reversible viscosity [MPa · s] ηrs 5.95 · 108

Sph. irreversible viscosity [MPa · s] ηis 2.40 · 1010

Dev. reversible stiffness [MPa] krd 3.40 · 104

Dev. reversible viscosity [MPa · s] ηrd 4.08 · 1011

Dev. irreversible viscosity [MPa · s] ηid 2.33 · 1012

Temperature [◦C] T 20
Ref. Temperature [◦C] Tref 20
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Figure 3. Variation of coefficientβ for load level fixed to80% of
instantaneous peak.

formation can be summarized as follows:

1 beginning of damaging process and, conse-
quently, of tertiary creep, occurs later;

2 when damage process starts later, slope of
displacement-time curve is less steep.

Analogous observations can be made from dual di-
agrams of Figures 4 and 5, showing effect of load
variation for a fixed value ofβ. With lower load lev-
els, slope of displacement-time curve is less steep and
begins later because damage increase is slower.

As for the first point, time is the most evident
parameter governed by coefficientβ. This observa-
tion agrees to experimental reality, since as we know,
when tertiary creep starts, structures where positive
stresses play an important role, such as beams sub-
ject to flexural loads, tend to collapse very fast (brittle
behavior). Time comes to be an important factor, if a
calibration of the coupling parameter is figured out.

Finally, a first test has been performed to see how
toleranceωint influences results. Two computations
with β = 0.4 and load set to70% have given the same
results in term of displacement-time behavior, when
tolerances have been set to10−5 and to 10−1. This
is due to the presence of Newton-Raphson iterations
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Figure 4. Variation of load level withβ = 0.



β = 0.4
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Figure 5. Variation of load level withβ = 0.4.

externally to loops in Gauss points; precision for the
overall procedure is then governed by the outer loop.
This is very true and even trivial but computational
time variation would be a good factor to look at. In
our case, it was more convenient to take a high pre-
cision for the inner loop, since this enhances conver-
gence. With tolerance set to10−1, convergence is ob-
tained only reducing time step length and computa-
tional time was 1310 seconds; with tolerance set to
10−5, computational time resulted in 1230 seconds.
The gap could be much wider in case of a more com-
plex structure; it is then significant to determine the
more convenient value forωint for our next analy-
ses, which could be quite time-consuming since they
will involve non local damage, with a much greater
number of dof’s. For the moment however, we make
use of a modified Newton-Raphson method, adopt-
ing the elastic matrix instead of the tangent matrix.
Tangent matrix, quite difficult to derive for a three-
dimensional law, is implemented only in the total cou-
pling case. Possibly, the convenience in assuming a
higher or smaller tolerance will be different, once tan-
gent matrix will be available for partial coupling too.

5.2 Structural response on three-point bending test
Two computations have then been performed onto a
beam under three-point bending. Loadings have been
kept constant in time. As usual to exploit structural
symmetry, only half of the beam has been analyzed.
Limitedly to this introductory work, a local model has
been used in spite of the presence of material soft-
ening behavior; for this reason, mesh is very coarse
(Figure 6) since damage will localize in a single ele-
ment band which should be as wide as the FPZ. Beam
geometry is the same as the largest beam described in
(Loukili et al. 2001), with distance between supports
equal to120 cm, depth40 cm, width10 cm, and vertical
cut 6 cm. However, our purpose was not to reproduce
experimental data, but begin to understand also struc-
tural behavior under the influence of coefficientβ.

Still with reference to Figure 6, half of the total ver-
tical load is applied at pointP23; at pointP18 verti-
cal displacement is constrained to zero; at pointsP23,
P20, P22 horizontal displacements are imposed to be

GIBI FECIT

P1

P14

A1 QA

A2

QB

A3

QC

A4 QF

A5 QE

A6 QD

Q1Q

A7

A8

A9

A10

P18

P19 P20

P21

P22

P23

Figure 6. Geometry and meshing of the beam under three point-
bending.

zero, too; instead, pointP21 is free to move in both
horizontal and vertical direction to simulate a vertical
cut, which forces collapse crack to take place in the
center of the beam. Assumed constants for concrete
are the same as in Table 1.

In Figure 7 deflection-time curves are depicted for
two values of softening modulusE1. Curves arrested
due to lack of convergence before a significant in-
crease in slope, which is presumably the reason for
which the procedure has not converged and then to be
expected after interruption. The two curves differen-
tiate themselves gradually. Structure is expected to be
damaged, since parameterE1 gains a meaning only
when damage is different from zero in some region
of the spatial domain. Gradual increase of displace-
ment together with non-zero value of damage is prob-
ably due to redistribution capabilities of the structure
in bending, in opposition to a single element in ten-
sion.

6 CONCLUSIONS
A partial coupling of Bemboudjema’s creep model
and damage model has been implemented in Elec-
tricité De France’s finite element codeCodeAster.
Coupling has been introduced through a constant pa-
rameterβ; this intervenes in determining the amount
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Figure 7. Deflection-time curve for the beam under three point-
bending.



of creep strains on which damage evolution depends.
First tests on a single finite element have given pos-

itive results. With different values of introduced coef-
ficient β, damaging of the element is delayed. Begin-
ning of damaging coincide with beginning of tertiary
creep. A few results have been also obtained from nu-
merical simulations on a simple structure. There, a
structural effect is observed and presence of damage
does not provoke the immediate beginning of tertiary
creep, as happens in the single element.

The coupling of creep and damage in the non local
damage frame is under development in order to sim-
ulate quantitatively the tertiary creep observed during
creep tests and the size effect analyzed afterwards on
surviving structures.
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et Marie Curie. (in French).

Badel, P. (2005).Loi de comportement ENDOISO BETON.
EDF-R&D/MMC. Manuel de Ŕeférence du Code Aster,
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