
1 INTRODUCTION 

Acoustic emissions (AEs) are caused by stress 
waves produced during the sudden internal stress re-
distribution from changes in the internal structure of 
a material subjected to loading (Carpinteri & Bocca 
1991). Various attempts have been made in the lit-
erature to describe the qualitative and quantitative 
behaviour emerging from AE experiments (e.g. Tur-
cotte 2003). Two-dimensional scalar lattice models 
for microfracturing have also been introduced, to 
numerically simulate the advancement of cracks and 
the resulting AE activity, including estimations of 
avalanche sizes and power-law behaviour (Zapperi, 
Vespignani & Stanley 1997). In most of the existing 
approaches, however, essential aspects of fracture 
mechanics are often neglected, such as energy dissi-
pation and fracture energy balance.  

Recent analysis of AE experiments has high-
lighted the multiscale aspect of cracking phenomena 
and fractal statistical analysis has been applied to 
describe the data (Carpinteri, Lacidogna & Pugno 
2004). Energy dissipation has been shown to occur 
in a fractal domain comprised between a surface and 
a volume (Carpinteri & Pugno, 2005, Carpinteri, 
Lacidogna & Pugno, 2007). We aim at introducing 
these aspects in a simple numerical model that ex-
pands on the approaches appearing in the literature, 
and evaluating the influence of the proposed modifi-
cations on expected results. In particular, in this con-

tribution we model the experimental results obtained 
on masonry elements of various volumes, and verify 
the scaling behaviour obtained in the cumulative 
number of AE events generated in compressive tests 
with respect to specimen volume. Also, we consider 
three-point bending tests on fibre-reinforced con-
crete beams and use the model to simulate the ex-
perimentally derived spatial distribution of AE 
events. 

2 MODEL 

2.1 Model description  
To correctly describe the phenomenon of AE in qua-
sistatic experiments, our goal is to introduce the 
simplest possible model containing the correct ener-
getic behaviour. For the sake of simplicity, we con-
sider a specimen having length Ltot and cross-section 
Atot. In a 2-D approximation, the specimen is mod-
elled as a discrete arrangement of Nx×Ny springs, as 
shown in Figure 1. Each spring is identified by the 
index pair (i,j), with i=1… Nx and j=1… Ny. The 
specimen is thus discretized in Nx portions, each 
modelled as an array of Ny parallel springs. Two op-
posite uniaxial forces of time-varying magnitude 
Ftot(t) are applied at the two ends of the specimen, 
each undergoing a displacement of magnitude xtot(t) 
in the direction of the force. In the simplest possible 
approach, all springs are considered identical in 
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length l and in elastic parameters (Young’s modulus 
E), but their cross-section Aij is allowed to vary 
within chosen limits, i.e. Amin < Aij <Amax, with the 
total specimen cross section remaining constant. The 
stiffness of a single spring can therefore be written 
as kij=EAij/l, whilst the equivalent stiffness of the i-th 
undamaged material portion, represented by the i-th 
arrangement of Ny parallel springs, is 

∑
=

=
yN

j
iji kK

1

 (1) 

The length and cross-section of the entire speci-
men are, respectively: 
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Figure 1. Discretization of a specimen subjected to uniaxial 
tension as adopted in simulations. 

 
Next, we introduce a fracture criterion whereby 

the failure of the individual spring (i,j) occurs when 
it undergoes a stress σij that exceeds its intrinsic 
strength σCij. The value of σCij is assumed to vary 
from spring to spring and to be distributed randomly, 
according to the Weibull distribution (Hermann & 
Roux 1990), which is widely used in fracture me-
chanics. The distribution P(σCij) of the spring 
strengths can therefore be expressed as: 
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where σC  is a nominal stress value for the material 
under investigation, and m is the Weibull modulus, 
which is characteristic of the considered material. 
An AE event is modelled as the failure of a single 
spring used to discretize the specimen. In the case of 
failure of the (i,j)-th spring, its stiffness kij is set 
equal to zero. It is clear that, as the loading of the 
specimen increases and the resulting damaging proc-
ess advances, the stiffness of each section of the ma-
terial will decrease as fewer and fewer springs form-

ing the section remain intact. Therefore, the stiffness 
of each section is time dependent, i.e. Ki = Ki (t). 
Correspondingly, the overall specimen compliance 
C(t) increases in time. In particular, the overall 
specimen compliance variation ΔC(t) deriving from 
a single AE event occurring at the location (i,j) can 
be written as: 
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The denominator in Eq. (4) indicates that the 
variation ΔCij depends on time and on the location of 
the AE event taking place, as is intuitive. 

We now turn our attention to the energetic as-
pects of AE events. Energy balance considerations 
require that the variation of the total potential energy 
ΔWij(t), when an AE event occurs, is compensated 
by the kinetic energy ΔTij(t) released in the form of a 
stress wave generated in the sample. The energetic 
contribution of the dissipated energy ΔΩij(t) in the 
formation of a crack surface at micro- or meso-scale 
must also be considered. Thus, we can write: 

0)()()( =ΔΩ+Δ+Δ ttTtW ijijij  (5) 

The last term is important in order to obtain the 
correct scaling properties observed in AE experi-
ments, as discussed below.  

We further observe that in Force-Controlled (FC) 
or Displacement-Controlled (DC) quasistatic ex-
periments the elastic potential energy variation for a 
spring failure (AE event) can be respectively written 
as: 
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where ΔC(t) and ΔK(t) are the specimen compliance 
and stiffness variations, respectively, due to the AE 
event. The dissipated energy ΔΩ  is assumed to be 
proportional to the newly created surface Aij:  

ijCij AG=ΔΩ  (8) 

where GC  is the critical strain energy release rate of 
the material. The above energy contributions can be 
expressed as a function of the accumulated elastic 
energy of the (i,j)-th spring at failure when the AE 
event takes place: 
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In the case of quasistatic experiments, we can as-
sume as a first approximation that, when a single 
spring used to discretize the specimen fails, the force 
acting on the corresponding specimen section will 
be redistributed evenly among all the adjacent 
springs. In this mean field approximation, the kinetic 



energy released in AE can be written, according to 
the previous equations, as: 
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with K(t+1) and K(t) the total specimen stiffnesses 
immediately before and after the AE event, respec-
tively. The dissipated energy can also be expressed 
by means of the accumulated energy in the (i,j)-th 
spring: 

ijijij Φ=ΔΩ γ  (14) 

2.2 Predictive capabilities 

As an example, we consider a 2-D specimen in the 
form of a thin bar of length L=10-2m and cross sec-
tion Atot=10-6m2, discretized by means of a Nx=100, 
Ny=1000 spring arrangement. The chosen material is 
concrete, with Young’s modulus E=23GPa, peak 
stress σC=10 MPa, and Weibull modulus m varying 
between 1 and 6. To evaluate the influence of the 
variable spring cross section Aij, two types of simu-
lations are carried out: the first with all the springs 
having constant cross section (Aij=Atot/Ny ∀i,j), and 
the second by assigning random Aij values, with the 
constraint that the specimen cross section remains 
constant (∑ =

j
totij AA , ∀i). 

Firstly, the specimen is subjected to traction with 
a displacement xtot  increasing linearly in time: 
xtot=vt. We wish to compare the scaling properties 
for AE both when energy dissipation is accounted 
for and when it is not. The number of AE events, 
calculated without accounting for energy dissipation 
and indicated here with NAE, correspond simply to 
the number of springs undergoing failure when their 
intrinsic strength is exceeded, whilst the released ki-
netic energy T accounts for energy dissipation, and 
is therefore a more realistic quantity to consider 
when comparing simulations to experiments.  

We consider results for a typical numerical ex-
periment with m=3, in the case of constant spring 
cross sections. The stress-strain curve displays only 
some softening before failure occurs. A less brittle 
behaviour can be obtained by choosing a small value 

of Nx, whereby softening continues down to zero for 
increasing strain values.  
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Figure 2. Stress-strain curve for a model specimen subjected to 
traction up to failure in a displacement-controlled simulation. 

 
Typically, the number of AE events NAE increases 

exponentially with time up to failure, as do the re-
leased kinetic energy T and the dissipated energy Ω. 
As discussed in detail elsewhere (Bosia, Pugno, 
Lacidogna & Carpinteri, 2007), it is possible to fit 
the data using a power law dependence, e.g. NAE∝ tα, 
T∝ tβ where α and β are non-integer exponents that 
are strongly dependent on the chosen Weibull 
modulus m. The simulated behaviour for T is shown 
in Figure 3. Best-fits are obtained for α = 2.7 and β 
= 6.8 in this case. This fitting procedure supplies the 
possibility to compare predictions of specific ex-
perimental data. 
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Figure 3. Exponential increase in the released AE kinetic 

energy T vs. time for a simulation with a linearly increasing 
displacement. 

 
Our purpose is now to verify the predicted scaling 

behaviour with specimen dimensions (length, cross-
section, and volume) and compare it with experi-
mental results in the literature. Indeed, it was shown 
in experiments (Carpinteri, Lacidogna & Pugno, 
2007) that the number of AE events scales with non-



integer exponents smaller than unity, indicating that 
AE occurs in a fractal domain with dimensions com-
prised between those of a surface and those of a vol-
ume. We therefore assume: 
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and proceed to determine the relevant exponents dNL, 
dNA, dTL, dTA through simulations. To do this, speci-
mens of different dimensions are considered. In par-
ticular, the specimen length Ltot is varied between  
10-6m and 10-2m (with corresponding discretizations 
Nx varying between 1 and 1000) and the cross-
section Atot is varied between 10-10m2 and 10-4m2 

(with corresponding discretizations Ny varying be-
tween 1 and 1000). Here, the results are discussed 
for constant spring cross-sections only. 
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Figure 4. Numerically computed scaling properties of AE en-
ergy T vs. specimen length Ltot (plot in log-log scale). 

 
As we are considering a uniaxial tensile test, we 

expect Ltot to be the relevant dimension with respect 
to which non-integer scaling occurs. Indeed, the ex-
ponents dNA, dTA are on average close to unity after 
repeated simulations, indicating direct proportional-
ity with respect to specimen cross-section. On the 
other hand, simulations for different specimen 
lengths produce average values of dNL= 0.78 and 
dTL= 0.57, respectively. Both exponents are consis-
tent with the experimentally derived effect of non-
linear scaling. However, the latter of the two differs 
considerably from unity, indicating that the released 
kinetic energy in AE is a variable that displays the 
effect to a greater extent, and is possibly a better 
candidate for comparison with experimentally de-
rived results. This is due to the fact that, when con-
sidering T instead of NAE, the dissipated energy is 
accounted for, as explained above. Figure 4 displays 
typical results for the T vs. Ltot dependence in re-
peated numerical simulations. 
 

Thus, despite its simplicity, the model seems to 
correctly reproduce a number of relevant experimen-
tally observed characteristics of systems undergoing 
damage, including stress-strain curves and AE en-
ergy scaling versus specimen size. 

3 MODELLING OF EXPERIMENTS 

Experimental monitoring of damage progression has 
been carried out by some of the authors on various 
engineering structures, including historic buildings 
(Carpinteri, Lacidogna & Pugno, 2007). In order to 
support these tests and obtain information on the 
criticality of ongoing processes, measurements have 
also been carried out on single laboratory specimens 
in various loading configurations. Analysis of the 
scaling properties of these structures can then be 
used to assess the stability of the full-scale struc-
tures. Here, we show results from two of these labo-
ratory tests, together with numerical predictions 
from the described model. 

3.1 Compressive tests on masonry elements 
First, a compressive test was conducted on three dif-
ferent masonry specimens through the combined use 
of double jacks and AE sensors. The prismatic ma-
sonry volumes tested in compression are shown in 
Figure 5. 
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Figure 5. Masonry elements tested in compression by means of 
double flat-jacks (dimensions are expressed in cm). The bricks 
are 6 cm wide, while the mortar layers are 1 cm thick. 

 
The dimensions of the cross-section of the ele-

ments correspond to the effective area of the ma-
sonry to which the pressure of the flat-jacks is ap-
plied. The tests comply with the procedures 
specified in ASTM 1991b, other than for the vertical 
cuts produced in order to eliminate, in the damaged 
element, the influence of the adjacent masonry por-
tions.  



0

0,5

1

1,5

2

2,5

3

0 50 100 150 200

t (min)

A
pp

lie
d 

St
re

ss
 (M

Pa
)

 
Figure 6. Adopted loading protocol in double flat-jack test on 
masonry elements. 

 
Various loading cycles are applied with increas-

ing stress levels, as shown in Figure 6, during which 
the cumulative number of AE events is monitored.  
For each test, the maximum number of AE events 
Nmax at peak-stress is evaluated. Results are summa-
rized in Table 1. 

 
Table 1. Experimental values obtained from flat-jack tests and 
AE measurements  
Specimen Volume 

(cm3) 
Peak stress 
(MPa) 

Nmax   

Vol. 1 8640 2.07  6500 
Vol. 2 16992 1.61  12000 
Vol. 3 33984 1.59  18000 

3.1.1 Simulations 
Simulations are carried out on the three specimens 
considered in experiments, with Young’s modulus 
E=20 GPa, peak stress in compression σC=5 MPa, 
and critical strain energy release rate GC =10 J/m2. A 
2-D discretization is used with 5000 elements in the 
length direction and 1000 elements in the width di-
rection. The loading protocol shown in Figure 6 is 
applied in the simulations and the resulting cumula-
tive number of AE events is recorded and compared 
to that obtained experimentally in each case. Good 
agreement is obtained in the three cases using 
Weibull modulus values comprised between 1.5 and 
2. Results are shown in Figure 7 for the intermediate 
specimen (Vol. 2 in Figure 5). The plot shows that 
the material releases energy when the stress level 
reached previously is exceeded (Kaiser effect), a re-
sult obtained both experimentally and in simula-
tions. 

Again, we are interested in analysing the pre-
dicted scaling behaviour by varying specimen di-
mensions and comparing it with experimental re-
sults, to verify that AE indeed occurs in a fractal 
domain with dimensions comprised between those 

of a surface and those of a volume. Thus, we as-
sume:  

3/)( D
AE VVN ∝  (15) 

where D is comprised between 2 and 3. Introducing 
the fractal acoustic emission density ΓAE , we can 
write: 

3/
maxAE / DVNΓ =  (16) 

where Nmax is the maximum number of AE events, 
evaluated at peak-stress. 
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Figure 7. Simulated and experimental number of AE events vs. 
time for Vol. 2, using the loading protocol in Figure 6. 

 
 
The experimental results summarized in Table 1 

show that the cumulative number of AE events in-
creases nonlinearly with increasing specimen vol-
ume. By best-fitting of the results of these tests, we 
obtain D/3 ≅ 0.743, so that the fractal exponent, as 
predicted by fragmentation theories, turns out to be 
D≅2.23, and the critical value of fractal AE density 
ΓAE ≅ 8.00 cm−2.23. 
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Figure 8. Simulated AE scaling behaviour (dots) by varying 
the specimen volume. A linear fit (dotted line) on the data 
(dots) yields the value D = 2.05. 

 



Numerical simulation results for scaling of NAE 
vs. specimen volume V are shown in Figure 8. Simi-
lar values to those obtained experimentally are de-
rived, and fitting of the data yields a fractal exponent 
of D≅2.05, slightly below the experimental value 
(D≅2.23). The value obtained numerically for the 
fractal exponent D when one considers the total re-
leased kinetic energy T instead of NAE is comparable. 
However, from a physical point of view, T is a better 
candidate for comparison with experimental results, 
due to the fact that in the latter case the dissipated 
energy in surface formation is accounted for. 

3.2 Three-point bending of a FRC beam 
As a second example, we consider a 100×15×15 cm3 
fibre-reinforced concrete (FRC) beam loaded up to 
failure according to the three-point bending test ge-
ometry and subjected to AE monitoring. The beam 
has a central notch 5 cm long with a fibre content of 
40 kg/m3 for a resulting Young’s modulus of 35 
GPa. The simulations are performed in displacement 
control by imposing a constant displacement rate 
equal to 10–3 mm/s. 

3.2.1 Simulations 
The specimen is modelled by adopting a 2-D discre-
tization, and by applying the analytically calculated 
bending stresses to each material portion at every 
time step. An AE event is generated whenever the 
applied stress locally exceeds the assigned peak 
stress. Each AE event implies the reduction of the 
local moment of inertia and of the local stiffness in 
correspondence with the cross-section where the 
event is generated, i.e. portions of the material 
where numerous fracture events have occurred will 
experience greater stresses and are thus more likely 
to fail.  

Simulations are carried out of a 2-D specimen of 
dimensions 85×15×15 cm3 (the specimen portion 
subjected to bending stresses), Young’s modulus 
E=35 GPa, peak stress σC= 45 MPa (both in traction 
and in compression), and critical strain energy re-
lease rate GC =10 J/m2. The specimen is discretized 
by using 3400×600 elements (in the x and y direc-
tions, respectively). Fracture maps of the damaged 
specimen are calculated at failure. Results coincide 
to a great extent to those obtained experimentally, 
both in the spatial distribution of the fractures and in 
their distribution of occurrence in time. The AE 
events take place mainly in the central section of the 
specimen, close to the notch, and towards the upper 
and lower boundaries of the specimen, where tensile 
and compressive stresses are the greatest. The extent 
to which the simulated AE sources concentrate 
around the notch is mainly dependent on the chosen 
Weibull modulus m for simulations. Thus, the spatial 
distribution of AE events is another quantity that al-
lows the verification of the validity of the model, 

and guides towards an appropriate choice of material 
parameters. Figure 9 illustrates typical results for 
m=3. 
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Figure 9. Damage localization in a simulated 3-point bending 
experiment up to failure. Dark regions indicate the locations of 
AE events. 

 

4 CONCLUSIONS 

We have presented a simple phenomenological 
model that allows us to capture a number of impor-
tant characteristics that emerge in damage progres-
sion experiments and AE measurements. In particu-
lar, the power law scaling behaviour with respect to 
specimen volume obtained experimentally in tests 
on masonry elements is correctly reproduced, as is 
the experimental spatial distribution of AE events in 
a FRC beam subjected to three-point bending. Hav-
ing verified the reliability of the model, its predic-
tive possibilities will be further investigated in the 
case of different materials and experimental configu-
rations. 

REFERENCES 

Bosia F., Pugno N., Lacidogna G., Carpinteri A. Iin prepara-
tion. 

Carpinteri A., Bocca P. 1991 In Damage and Diagnosis of Ma-
terials and Structures, Ed. Pitagora (Bologna). 

Carpinteri A., Lacidogna G., Pugno N., 2004. Damage diagno-
sis and life-time assessment of concrete and masonry struc-
tures by an acoustic emission technique, in V.C. Li et al. 
(eds.), Fracture Mechanics of Concrete and Concrete 
Structures (Proceedings of the 5th International FraMCoS 
Conference, Vail, Colorado, USA) 1: 31- 40. 

Carpinteri A., Pugno N.,. 2005. Are scaling laws on strength of 
solids related to mechanics or to geometry? Nature Materi-
als 4 (6): 421-423. 

Carpinteri A., Lacidogna G., Pugno N., 2007. Structural dam-
age diagnosis and life-time assessment by acoustic emis-
sion monitoring. Eng. Frac. Mat. 74: 273-289. 

Hermann, H.J. & Roux, S. 1990. Modelization of fracture in 
disordered systems. In H.J.Hermann & S.Roux (eds.), Sta-
tistical Models for the Fracture of Disordered Media. 
North Holland: Elsevier Science publishers. 

Turcotte, D.L. 2003. Micro and macroscopic models of rock 
fracture. Geophys. J. Int 152: 718-728. 

Zapperi S., Vespignani A., Stanley, H.E. 1997. Plasticity and 
avalanche behaviour in microfracturing phenomena. Nature 
388: 658-660. 


