
1 INTRODUCTION 

Due to the composite construction of masonry, pro-
gressive failure is a complicated process.  Masonry 
consists of two components, brick units and mortar 
joints which exhibit very different stiffness and 
strength properties.  Moreover, both constituents 
have a low tensile strength when compared to their 
compressive counterparts. Consequently, a masonry 
wall in compression does not necessarily fail in 
compression of the weakest component but can fail 
in tension due to mismatch conditions in the com-
posite.  Aside from the large strength variations of 
the two components it is the bond among the brick 
unit and the mortar which determines the critical 
failure path in a masonry wall.  

 
The current computational-experimental study fo-
cuses on the critical failure mode and the question 
whether three dimensional analysis is required to 
capture in-plane as well as out-of-plane failure 
modes or whether two dimensional failure simula-
tions do suffice. To this end continuum based finite 
elements are employed for meso-modeling of the 
brick and mortar response of a masonry prism sub-
jected to compression.  The test article consists of 
five solid clay brick units which are mortared by 
four layers of cement mortar.  The nonlinear failure 
simulations resort to the damage-plasticity model by 
Lee and Fenves [1998] which has been incorporated 
into Abaqus [Version 6.5].  Appropriate material 
tests on brick units and cement mortar were carried 

out in-house in conjunction with the current 
NEESR-SG research project [Seismic Performance 
Assessment and Retrofit of Non-Ductile RC Frames 
with Infill Walls].  Thereby the main objective is to 
validate the computational results with the experi-
mental data of masonry prisms.  

2 MATERIAL MISMATCH 

A key issue in the failure mechanism of a masonry 
prism is the initial mismatch of the elastic properties 
of brick and mortar.  Assuming isotropy the elastic 
moduli Em , Eb in concert  with the Poisson numbers 
vm , vb  govern the cross-effect of axial compression 
in the form of the in-plane and out-of-plane lateral 
strain.  If the interfaces between the mortar and 
brick were allowed to slip freely, the two material 
components would deform laterally by differing 
amounts except for a special condition which is de-
tailed below.  The result of this mismatch of lateral 
deformation is that friction restrains and hence com-
presses the mortar joints from free lateral expansion 
because of the stiffer brick units, which in turn ex-
perience lateral tension.  This can be readily ex-
plained from examining the compliance relation-
ships of isotropic linear elastic materials and their 
interaction along bimaterial interfaces. 
 
Considering the masonry prism in Figure 2 where 
the y-axis refers to the direction of axial compres-
sion and the x- and z- coordinates the lateral direc-
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tions.  The normal strains in the x-direction of the 
brick unit and the cement mortar are according to 
generalized Hooke’s law, 
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Under axial compression equilibrium dictates that 

σy
b = σy

m = σy.  Assuming for the time being that the 
lateral stresses remain zero because of no frictional 
restraint then the lateral strains are directly propor-
tional to the compliance relations, 
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In other terms the lateral compliance is directly pro-
portional to the ratio clat = v/E. In contrast under full 
bond and adherence of the two components at the 
bimaterial interface strong compatibility requires 
that the lateral strains in the brick and mortar in 
Equation (1) are equal. Assuming σx

m =σz
m and σx

b 
=σz

b this leads to the critical condition of no lateral 
mismatch under axial stress σy when, 
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In other terms, if the ratio of the lateral compliances 
n = 1, then there is no mismatch between the lateral 
deformations of the two materials. 

 
Using equilibrium the lateral stresses in the brick 
and mortar components may be related to each other 
by a statement  of  self-equilibrium, σx

m = -rσx
b   and 

σz
m = -rσz

b  where r = tb/tm denotes the thickness ra-
tio of  the brick unit over the mortar joint. This con-
dition has been introduced by Berto et al. [2005] in 
order to develop the explicit expressions below for 
the lateral stresses in the brick unit and the mortar 
joint in terms of the axial stress σy, 
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The assumptions for this expression are as follows: 
 
1. The vertical stress is uniform throughout both 
components of the prism 
2. There is no slip along the brick/mortar interface 

3. There is a state of uniform lateral stress within 
each material 
4. There is no stress transfer through interface shear  

 
It is the differential equilibrium condition which 

restricts the validity of the two expressions in Equa-
tion (4) to the two axial planes of symmetry in the 
center of the masonry prism. Clearly at the surface 
of the prism all lateral tractions must vanish. There-
fore large shear stresses must develop near the lat-
eral faces of the prism (a) in order to diminish the 
mismatch of the lateral normal stresses and (b) to 
reduce the magnitude of the surface tractions to zero 
(σx

b = σx
m = 0 at the lateral x-faces and σz

b = σz
m = 0 

at the free lateral z-faces). 
 
In Equation (4) σy is negative for the case of a prism 
loaded in axial compression.  It can be easily veri-
fied from Equation (4) that the lateral normal 
stresses are zero when the mismatch condition n = 1.  
It is also elementary to recognize that the lateral 
brick stresses are positive in tension, σx

b = σz
b > 0,   

when n > 1, while the lateral mortar stresses are in 
compression, σx

m = σz
m < 0.  Together with the axial 

compression σy < 0 this leads to a fracture critical 
state of equibiaxial tension-compression in the brick 
and to a forgiving state of triaxial compression in the 
mortar. Note the opposite result occurs for n < 1 
when the brick unit is laterally more compliant than 
the mortar, resulting in a fracture critical state of 
equibiaxial tension-compression in the mortar rather 
than in the brick. 

 
An extension of these results can be obtained by 
considering a transversely anisotropic brick model.  
Assuming the extrusion direction (vertical prism di-
rection) of the brick to be the principal axis of trans-
verse anisotropy, the axial brick stiffness differs 
from the lateral one. In this case three additional 
elastic material properties are needed, Ey

b, vyx
b = vyz

b, 
Gyx

b = Gyz
b beyond the two isotropic moduli in the 

plane of the brick unit, Exz
b and vxz

b: 
 
Ey

b = brick modulus of elasticity in axial y-direction 
Exz

b = brick modulus of elasticity in the lateral x, z- 
          directions (isotropic x-z plane) 
vyx

b = vyz
b = brick Poisson ratio relating the axial and 

          any lateral x-, z-direction 
vxz

b  = brick Poisson ratio relating the two lateral x-z 
          directions (isotropic x-z plane) 
Gyx

b = Gyz
b = brick shear modulus relating axial and 

           lateral directions 
Em = [isotropic] mortar modulus of elasticity 
vm = [isotropic] mortar Poisson ratio 

 
Starting from the transversely anisotropic elastic 
compliance equations for brick and mortar: 
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and making the same assumptions as with the iso-
tropic model, the lateral normal stresses in the brick 
units and mortar joints turn out to be: 
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Although this complicates direct interpretation of 
the cross effect between axial compression and lat-
eral expansion/stresses the condition for zero mis-
match leads to the same condition n = 1 in analogy 
to Equation (3) whereby clat

b = vyx
b / Ey

b.  Also note 
that the shear stiffness properties do not appear in 
these expressions because the principal stress coor-
dinates are assumed to coincide with the principal 
axes of transverse anisotropy, and because only 
normal components are considered in the derivation 
of Equation (6). 

3 EXPERIMENTAL RESULTS 

Bricks, mortar, and masonry prisms were tested at 
the University of Colorado structural materials labo-
ratory.  Table 1 displays the average results of these 
experiments indicating reasonable correlation with 
COV values varying between 3-15%.  So far a total 
of 9 bricks, 4 mortar cylinders, and 5 prisms were 
tested in axial compression and tension.  The bricks 
had dimensions 4.5”×3.75”×2.25” and the mortar 
joints were 0.375” thick.  The mortar mix consisted 
of a sand:cement:lime ratio of 5:1:1.  The normal-
ized axial response behavior of the five prism ex-
periments are shown in Figure 1 together with that 
of brick and mortar.  Note that complete stress-strain 
data was collected for only two brick specimens. 

 
The brick tests were performed after capping the 

clay units with a thin layer of gypsum capping com-
pound.  The bricks were stored under ambient condi-
tions.  The compression tests on the cement mortar 
were performed on 4”x8” cylinders which were 
cured 28 days in the fog room before capping and 
testing.  The prisms were covered with plastic and 
cured for 28 days under ambient conditions before 
testing.  The construction of the prisms included 
wetting each brick for approximately 10 seconds be-
fore placement.  The test data are summarized in 
Table 1 and shown in Figure 1. 
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Figure 1. Experimental data from prism, brick and mortar tests. 
 
 
Table 1.  Average material properties from testing _________________________________________________ 
           Brick   Mortar  Prism _________________________________________________ 
Comp. Strength      4,840   732   2,490 
(psi) [COV]       [15.2%]  [8.4%]  [9.8%] 
 
Tensile Splitting Strength   372   141   ------ 
(psi) [COV]       [12.5%]  [3.2%] 
 
Modulus of Rupture    640   ------   ------ 
(psi) [COV]       [8.6%] ________________________________________________ 

4 3D NUMERICAL SIMULATIONS 

A three dimensional finite element prism model was 
created with 4653 nodes and 3600 first order hexa-
hedra elements resulting in 13959 DOF.  The com-
mercial software Abaqus Version 6.5 was used for 
the finite element analyses.    Figure 2 illustrates the 
3D model, and Figure 3 shows the deformed mesh 
along with the equivalent plastic strain.  Figure 3 
clearly shows the lateral “bursting” in the middle 
brick which is the dominant failure mechanism in 
the masonry prism. 
 



The material properties used for the numerical 
analyses are listed in Table 2.  The damage plasticity 
concrete formulation by Lee & Fenves [1998] was 
used for both materials.  The parameters K, fbo/fco 
and ecc determine the initial shape of the failure sur-
face, where K defines the out-of roundness of the 
deviatoric trace, the strength ratio fbo/fco  the increase 
of equibiaxial compression over uniaxial compres-
sion and hence the internal friction, and ecc the 
rounding factor of the equitriaxial tensile vertex on 
the hydrostat.  The dilation angle Ψ specifies the di-
rection of the (non-associated) plastic flow.  The 
tensile fracture energy describes the initial energy 
release after the peak stress is reached in tension.  
Tensile exponential decay was specified with the 
fracture energy shown in Table 2.  There was no 
damage considered in the brick and mortar elements 
in order to simplify the constitutive input of the 
damage-plasticity model in Abaqus. 
 
Table 2.  Material properties (damage plasticity) ________________________________________________ 
             Brick    Mortar ________________________________________________ 
Modulus of Elasticity (psi)    3.0x106   5.0x105 
 
Poisson ratio         0.1    0.2 
 
Uniaxial Comp. Strength (psi)   4,840    732 
 
Uniaxial Tensile Strength (psi)   372    141 
 
Tensile Fracture Energy GI(lb/in)  0.46    0.34 
 
Dilatancy Angle Ψ       20°    20° 
 
Friction Angle        19°    19° 
 
Deviatoric Out-of- Roundness K  0.7    0.7 
 
Biaxial Strength Ratio fbo/fco    1.15    1.15 
 
Vertex Rounding ecc      0.1    0.1 _______________________________________________ 
 
 
The 3D model was analyzed with and without lateral 
restraints at the top and bottom faces of the prism.  
Figure 4 illustrates the average stress-strain response 
of both the constrained and unconstrained 3D prism 
models.  Very little difference is evident in the two 
results.  This may be due to the localized effect of 
the top and bottom boundary conditions.  With the 
prisms under consideration having an aspect ratio of 
3.4, these end effects become insignificant.  Figure 4 
also includes the input data of the compression cali-
bration curves for the mortar and brick.  As ex-
pected, the prism behavior falls between the mortar 
and brick response in axial compression. 
 
Figure 5 shows the shear stress contours in the x-y 
plane at a center mortar joint immediately before 
plastic behavior began in the prism.  The mortar is 
clearly being restrained from lateral expansion by 

the surrounding brick material due to interface 
shearing, which causes the brick to be in a state of 
bilateral tension-compression. 
 
A comparison of the 3D numerical model and the 
analytical approximation in Equation (4) is dis-
played in Figure 6.  The brick stresses were taken at 
the center of the middle brick, and the mortar 
stresses at the center of the adjacent mortar joint.  
Clearly the stresses in the mortar agree very well up 
to the peak prism stress.  The stresses in the brick 
agree well at low stress levels, but start to diverge 
from the analytical solution before the peak prism 
stress is reached.  This can be explained by the na-
ture of the analytical approximation.  Equation (4) 
represents the entire cross effect of axial compres-
sion in terms of two values, one for the mortar and 
one for the brick.  This is a good approximation for 
the thin mortar layer, but it is a poor approximation 
for the much thicker brick with a large stress varia-
tion. 
 

 
Figure 2: 3D finite element mesh 
 
 

 



Figure 3. Deformed shape and equivalent plastic strain (defor-
mation scale = 20). 
 
It is interesting to note that in the finite element 
model, the lateral stresses in the brick are no longer 
the same in the x- and z-directions as contrast to the 
analytical solution.  An explanation for this emerges 
from the simplifying assumptions leading to Equa-
tion (4) in which the different geometry in the lateral 
directions of the prism is neglected.  In reality the 
different lateral dimensions of the prism result in 
different response behavior in the x- and z-
directions, as seen in the finite element results of the 
brick response which turns very pronounced close to 
failure. 
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Figure 4. 3D model prism response. 

 
 
 

 
 
Figure 5. Shear stresses at mortar joint (Deformation Magnifi-
cation = 500). 
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Figure 6A. A comparison of the numerical and analytical re-
sults (center of prism). 
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Figure 6B. A comparison of the numerical and analytical re-
sults (center of prism). 

5 MESH SENSITIVITY 

The “standard” 3D mesh consists of brick units that 
are 6 elements high, 10 elements wide, and 8 ele-
ments deep, as can be seen in figure 2.  The mortar 
joints have 4 layers of solid elements through their 
thickness.  In addition three coarser meshes were 
considered.  The first, “coarse mesh 2”, implements 
bricks of 3 elements high, 6 elements wide, and 4 
elements deep, while 2 element layers comprise the 
thickness of the mortar joint.  The second, “coarse 
mesh 1” uses the same mesh as “coarse mesh 2”, ex-
cept that the mortar joints are comprised of only 1 
element layer through their thickness. The third, 
“coarse mesh 0” is the same as “coarse mesh 1”, ex-
cept cohesive interface elements replace the single 
layer of mortar elements.  All 3D solid elements are 
trilinear 8 node hexahedral elements using full inte-
gration. The average stress-strain results for these 
three models are shown in Figure 7.  The finite ele-
ment models show close agreement with respect to 
mesh refinement in spite of the large drop of axial 
load resistance shortly after peak.  Of particular in-
terest are the nearly identical results for the single 
and double element layers used to idealize the mor-
tar joint.  This is due to the tension in the brick being 
the dominant source of prism failure. In contrast, the 
model using a single layer of cohesive interface ele-
ments for the mortar joint (designated as “coarse 
mesh 0”) does result in a failure mechanism which is 
totally different from that of a single layer of finite 
thickness continuum elements.  In fact, the zero-
thickness cohesive interface element does not cap-



ture the lateral mismatch between brick and mortar 
and simply reproduces the brick calibration curve in 
compression as shown in Figure 4. In other terms the 
cohesive interface model in Abaqus [Version 6.5] 
does not activate damage in compression and hence 
the masonry prism behaves like a single brick 
mainly because of the missing normal stress and 
strain components tangential to the interface, see 
e.g. Willam, Rhee & Shing [2004]. 
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Figure 7. Mesh sensitivity study. 

6 THREE PLANAR MODELS 

For meso-studies of full-scale masonry structures 
detailed 3D finite element models are still prohibi-
tive in cost. Consequently 2D failure simulation 
models need to be assessed whether they are capable 
of reproducing the governing failure mechanism in 
the composite masonry prism, see e.g. Anthoine 
[1997].  Assuming plane stress, plane strain and gen-
eralized plane strain options all dimensional reduc-
tions are based on the standard mesh with 517 nodes 
and 460 elements, resulting in 1551 DOF, as illus-
trated in Figure 8.  This leads to a large reduction of 
DOF by nearly tenfold and an even greater saving of 
computational resources because of the narrow 
bandwidth. The same damage-plasticity model is 
used for the material description as in the 3D analy-
sis.  The boundary conditions are laterally uncon-
strained at the top and bottom platen/specimen inter-
faces as before.  The generalized plane strain option 
in Abaqus is based on the 3D formulation in which 
the out-of-plane motion is confined by two rigid 
bounding planes whose relative separation is con-
trolled by a reference node implementing out-of-
plane DOF 3.  The in-plane DOF in the two bound-
ing planes are subject to equality constraints elimi-
nating the out-of-plane shear deformations but ac-
counting for the out-of-plane normal strain.  This is 
consistent with the observations by Li & Lim [2005] 
where a mixed variational formulation has been de-

veloped to capture generalized plane strain in terms 
of an additional DOF. 

 
As can be seen from figure 9, the plane strain and 
generalized plane strain models show a higher peak 
stress than the 3D model.  The plane strain model 
reproduces the brittle in-plane failure mode present 
in the 3D model.  The generalized plane strain 
model peaks closer to the 3D results than the plane 
strain model. However the very brittle post-peak be-
havior of the 3D mesh is reduced in favor of a more 
ductile response.  The plane stress model shows 
dismal results, diverging from the linear elastic 
range far too early, and then failing to converge 
soon after. This premature failure is due to the 
change of the underlying failure mechanism from 
biaxial tension-compression in the brick units to bi-
axial compression in the mortar joints due to the 
lack of out-of-plane confinement. In short, the two 
dimensional reduction of the stress state introduces a 
dramatic change of the failure mode.  Similarly to 
the 3D simulations the plane strain model provides 
lateral confinement in both components, in fact it 
prohibits out-of-plane failure in both brick and mor-
tar, and henceforth leads to an upper bound.  The 
generalized plane strain analysis provides an inter-
mediate solution, the out-of-plane movement re-
duces the amount of plane confinement in the brick 
and in the mortar.  For this reason, the generalized 
plane strain model is being used for the computa-
tionally intense parameter studies in the remainder 
of the paper. 
 

 
Figure 8: Finite element mesh for the planar models. 



7 THE EFFECT OF BRICK TENSILE 
STRENGTH 

With the biaxial tension-compression state of brick 
stress being considered to be the critical failure 
mechanism, one would expect that the brick tensile 
strength plays the dominant role in the overall 
strength of the masonry prism.  For this reason the 
generalized plane strain model was used to study the 
effect of the tensile brick strength which was varied 
from ft

b =100 psi to ft
b =1000 psi, leaving all of the 

other parameters unchanged.   
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Figure 9. A comparison of the four FEM models. 
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Figure 10. The effect of brick tensile strength on the prism 
compression strength. 
 

Figure 10 shows the results of this study.  As ex-
pected, the increase in the brick tensile strength in-
creases the compressive capacity of the prism by 
over 100%.  The fact that the prism strength gradu-
ally approaches the axial compression capacity of 
the brick unit supports the observation that prism 
failure develops first in biaxial tension-compression 
in the brick for which the axial compression strength 
provides an upper bound. 

8 THE EFFECT OF MORTAR JOINT 
PROPERTIES 

In terms of composite analysis one would expect 
that the amount of mortar should play some role in 
the stiffness and strength properties of the prism.  To 
this end the thickness of the mortar joint was varied 
from 0.1” to 0.375”.  The expectation is that a 
thicker mortar joint would reduce the stiffness of the 
prism.  Because of the compliance mismatch in 
Equation (4) a higher tensile stress should develop 
in the brick and as a result the prism would fail at a 
lower compression stress.  The results are displayed 
in Figure 11.  As can be seen, decreasing the thick-
ness of the mortar joint increases the stiffness of the 
prism and its compressive strength by over 30%. 
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Figure 11. The effect of mortar joint thickness on the prism 
compression strength. 
 
In contrast Figure 12 illustrates the comparatively 
small effect of the mortar capacity on the prism 
strength which increases by less than 15% if one tri-
ples the mortar compression strength.  As one would 



expect, a stronger mortar means a stronger prism.  
However, the mortar strength plays little role in the 
failure mechanism of the masonry prism which is 
governed by biaxial tension-compression in the 
brick unit rather than by triaxial compression in the 
mortar. However all failure simulations indicate that 
there is a residual strength of the prism after the 
large drop of load capacity has taken place which at 
first appears to be related to the compression 
strength of the mortar. However considering its in-
variance in Figure 12 it appears that both the peak as 
well as the residual value of compressive prism 
strength are closely related to the tensile capacity of 
the brick as shown in Figure 10. 
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Figure 12: The effect of mortar compression strength on the 
prism compression strength. 

9 SUMMARY OF PRISM STRENGTH 

Table 3 compares the axial strength results of the 2D 
and 3D finite element models with the prism test 
data.  The 3D model furnishes a prism strength 
which agrees well with the experimental result, it is 
12% higher than the average of the experimental 
prism data with a COV of 9.8%.  The plane strain 
peaks 41% higher, while the generalized plane strain 
peaks 25% higher.  Due to the erroneous failure 
mode, the plane stress result yields a prism strength 
which is 65% lower than the test data. 
 
Table 3.  A comparison with test results ______________________________________ 
         Prism Strength ______________________________________ 
Experimental      2,490 psi 
3D FE-Model      2,797 psi 
Plane Strain      3,514 psi 
Generalized Plane Strain  3,113 psi 
Plane Stress               860 psi 
_______________________________ 
 

The discrepancy among the test data and the nu-
merical results may be in part due to the lack of test 
data to calibrate the large number of material pa-

rameters of the damage-plasticity model in Abaqus. 
In view of the experimental variations and the un-
certainties in all input parameters the 3D model pro-
vides fairly close agreement, although the general-
ized plane strain model may be an acceptable 
alternative to capture the main features of masonry 
and to reduce computational effort. 

10 CONCLUSIONS 

The present computational and experimental studies 
illustrate the failure mechanism of a masonry prism 
in compression.  For a better understanding of the 
failure processes the effect of several material and 
geometric properties were investigated with the aid 
of 2D and 3D finite element models.  The results 
demonstrate that full 3D simulations are warranted 
when the proper failure mechanism is to be cap-
tured.  The parameter studies indicate that the tensile 
strength of the brick has a significant effect on the 
prism strength which is far greater than the effect of 
the mortar properties.  In fact the thickness of the 
mortar joint is much more significant than the com-
pression strength of the mortar. 
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