
1 INTRODUCTION  

In the Delft lattice model the continuum is simulated 
by a mesh of small one-dimensional elements with 
adequate stiffness properties (Schlangen & Garboczi 
1996, 1997). The linear elastic properties and failure 
criterion of these elements are adjusted accordingly 
to the properties of the macroscopic material. At 
each calculation step, a linear analysis is performed 
and the rigidity of one element is removed when a 
failure criterion is attained, in this way simulating 
the cracking process. The Delft lattice model is 
therefore often classified as a “repeated linear 
analysis” type of model. The dimension of the 
elements may be so small, in relation with the size of 
the model (10-2 to 10-4 times smaller), that materials, 
such as concrete, are at these scales not anymore 
considered as homogeneous, but as being composed 
of individual constituents (aggregates, mortar). 

 
In the article, an alternative method consisting in 
removing the element stiffness stepwise will be 
presented. First the bending and shear stiffnesses are 
removed and only if that same element fails again, 
the remaining axial stiffness will also be removed. 
The main concept is to reproduce the type of failure 
behaviour observed for most types of frame 
structures, in which the frame elements will first 
loose the ability of transmit moments, while still 
maintaining the capacity of transmitting axial forces, 
therefore, inducing a redistribution of the load. The 
main objective is to improve the lattice ability to 

simulate less brittle behaviour, especially when 
subjected to compression forces. 

2 MODEL GENERAL DESCRIPTION 

The geometry of the lattice model results from the 
distortion of a regular mesh consisting of equilateral 
triangles. The amount of distortion is controlled by 
the variable z as defined by Lilliu & van Mier 
(2000), where 0 ≤ z ≤ 1. If z = 0 is used, a regular 
mesh is obtained and if z = 1, the maximum 
distorted mesh is generated (Fig. 1). All the models 
presented in this article use a value z = 0.9. A quite 
distorted mesh was preferred in order to make the 
model fairly independent of the load direction and to 
introduce some degree of disorder, even when a 
homogeneous material is modelled. 

 
 
 
 

 
Figure 1 – Lattice mesh examples for z = 0 (left), z = 0.5 
(center) and z = 0.9 (right). 
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ABSTRACT: The article describes recent advances achieved within the Delft lattice model to improve its 
ability to simulate compressive cracking in brittle or quasi-brittle materials, like plain concrete. The main 
modification made to the conventional formulation of the beam lattice is the introduction of an extra step 
when the beams stiffness is removed. When the failure criterion for an element is first attained, the bending 
and shear stiffnesses are removed, and later the remaining axial stiffness is removed when the same beam 
fails again. Although the number of calculations needed increase, the model maintains its simplicity. The 
presented results are promising, as the model is now able to better localize the damage, giving more realistic 
crack patterns, load/deformation and rigidity-decay curves. 



 
A cube of 0.1 × 0.1 × 0.1 m is simulated using a 2-D 
model. The average beam length (lb,av) was set to 2.0 
mm. Note that because of the mesh distortion, the 
true length of a beam (L) will vary. Using this lb,av 
the lattice model will consist of approximately 8730 
beams. The ratio between lb,av and the dimension of 
the lattice model, will influence the material 
behaviour. The smaller the beams are the more 
brittle the material will react. However, for practical 
reasons, the length lb,av may be limited due to 
computational restrictions. The length lb,av also 
depends on the size of small material heterogeneities 
that we may still want  to incorporate (as in the 
concrete composite model, where the size of the 
aggregates determines the choice lb,av, see section 5). 

Besides the difference in length, all beams have 
identical properties. The beams thickness is 0.1 m to 
account for the 3D to 2D simplification. The beam 
height is chosen equal to 0.54 × lb,av, which was 
found to better approximate the target Poisson ratio 
of 0.2. The elastic modulus of the beam (E) was set 
equal to 33.9 GPa, in order to approximate the 
macroscopic elastic modulus of 25.0 GPa. 

After selecting the geometry and elastic 
properties of the beams, the failure condition of the 
beams has to be chosen. A failure condition similar 
to the one described by Schlangen & Garboczi 
(1996), i.e. a tensile limiting failure stress (σlim), is 
used. The beam will fail, when the maximum stress 
in a beam section exceeds this limit. To calculate the 
stress in a beam a comparative stress (σcomp) is used, 
instead of the actual elastic stress. This comparative 
stress σcomp is determined by summing up the stress 
resulting from the beam axial force and partially the 
stress resulting from the moment, see Equation 1: 
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where σcomp = comparative stress; F = axial force; A 
= beam cross-sectional area; α = weight coefficient; 
M = bending moment and W = flexure modulus. 

 
The stress resulting from the shear is neglected. The 
part of the stress resulting from the moment is 
governed by the variable α, were 0 ≤ α ≤ 1. If α = 0 
the stress resulting from the moments is neglected 
and if α = 1, the stress is fully considered. Note that 
if α = 0, the beams with a negative (compression) 
axial force will never be able to break, regardless of 
how high the moment may be. This α-variable 
determines the brittleness of the model response: a 
high α results in a more brittle response. In this 
study α = 1.0, 0.5 and 0.0 will be used. The stress 
σlim (local tensile strength) is chosen equal to 24.2 
MPa, which will result in a material maximum 
compression stress of 40 MPa for a modified lattice 
model with α = 0.5. 
 

 

a)  b)  
Figure 2 – Boundary conditions: a) “restrained”; b) 
“unrestrained”. 

 
Finally the boundary conditions are generally taken 
free for the lateral sides of the model. Horizontal and 
vertical displacements are set equal to zero 
(restrained conditions) for the bottom and upper 
sides of the model(Fig. 2a). Although in some 
analyses all the horizontal displacements were 
unrestrained (Fig. 2b), these models will be labelled 
as “unrestrained”. The upper side of the model is 
subjected to a progressive negative displacement in 
vertical direction resulting in an increasing 
compressive loading.  

3 CONVENTIONAL LATTICE 

In a conventional lattice model the rigidity of one 
beam is removed in one single calculation step. 
Using this standard formulation, the modelling of 
cracking in compressive loading becomes 
problematic, as will be shown by the next examples. 

If α = 0.0 the model is completely unable to 
simulate failure as the damage will never localize. 
Most beams perpendicular to the load direction will 
sustain tensile loading and thus break (Fig. 3), but 
the other beams parallel to the load are almost 
“unbreakable” and will indefinitely continue to 
transmit the load. The resulting overall loss of the 
model stiffness is therefore quite low and shows a 
tendency to stabilization of the stiffness (Fig. 4). 

 
Figure 3 – Beams broken for the conventional model using an 
α = 0.0. The specimen is loaded in compression to a strain of 9 
mm/m. 



 
Figure 4 – Stress-strain and stiffness-strain curve for the 
conventional model with α = 0.0. 

 
In the other extreme case, when α = 1.0, the 
specimen will break, but in a quite unrealistic way: a 
main crack is formed, but it crosses through the 
model from one to the other side. (Fig. 5). The 
model will behave in a quite brittle way, with an 
abrupt loss of stiffness and ability to transfer loads 
(Fig. 6). 

 
Figure 5 – Beams broken for the conventional model using an 
α = 1.0 (compressive strain = 0.6 mm/m). 

 

 
Figure 6 – Stress-strain and stiffness-strain curve for the 
conventional model with α = 1.0. 

 

If an intermediate value of α=0.5 is used, we still see 
a quite unrealistic behaviour of the cracking from 
one to the other side. Now also secondary cracks 
form, although, they do not link the upper and the 
bottom part of the model (Fig. 7). The stress-           
-deformation behaviour is still too brittle but the 
model retains some ability to transfer small loads 
and so some stiffness remains after main failure 
(Fig. 8).  

Note that not all the calculation steps are 
presented in the stress-strain and stiffness-strain 
curves. Only the calculation-steps where an increase 
on the deformation is observed are presented (in 
order to maintain the curves simplicity, the 
backward steps, characteristics of a lattice model, 
where omitted). 

 
 

 
Figure 7 – Beams broken for the conventional model using an 
α = 0.5 (compressive strain = 1.4 mm/m). 
 

 
 

 
Figure 8 – Stress-strain and stiffness-strain curve for curves for 
the conventional model with α = 0.5. 
 



4 MODIFIED LATTICE 

In the modified lattice model the beam stiffness is 
removed in two steps: first the bending and shear 
stiffnesses are removed and only when it fails again 
in a subsequent calculation (using the same failure 
criterion) the remaining axial stiffness is removed. 
So, in the second step the beam element is replaced 
with a spring element. This is achieved by assigning 
a beam inertia (I) equal to 0, or a very small value. 
In the bellow equations 2 and 3, the stiffness matrix 
of a single element in the first (Ke

1) and second (Ke
2) 

steps are presented. 
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where Ke
1 = element stiffness matrix in the first step; 

Ke
2 = element stiffness matrix in the second step; E 

= elastic modulus of the beam; A = beam cross-
sectional area; I = beam moment of inertia; L = 
beam length. 

 
 
If α = 0.0 the modified lattice behaves exactly like 
the conventional lattice mode, and similar results as 
in figures 3 and 4 are obtained.  

 
 
 
 
 
 
 

If α = 1.0 the compression will originate “X” shaped 
cracks (Fig. 9). As also represented in the Figure 9, 
this “X” is formed in 2 phases: first a “>” shaped 
crack is formed in left part and after an additional 
“<” shaped crack is formed in the right part of the 
specimen. Each of these phases corresponds to a 
noticeable drop on the model stiffness as observed in 
figure 10. Note also that the model stiffness will 
now start to decreases already in the pre-peak curve 
and not just before the peak stress. 

If an intermediate α value of 0.5 is chosen, a more 
realistic cracking behaviour is observed (Figures 11-
14). First one part of the specimen starts to detach, 
then the other part and finally extensive cracking in 
the centre of the model results in a final rupture of 
the specimen. Each of these 3 main phases are 
clearly noticeable in the stress-strain and stiffness-    
-strain curves, corresponding to 3 main drops of the 
model stiffness. As planned the initial model 
stiffness is 25 GPa and the peak compression stress 
is 40 MPa. The peak stress occurs for an imposed 
deformation of 1.8 mm/m. The model stiffness starts 
to slightly decay at 0.9 mm/m. 

 

 
Figure 9 – Beams broken for the modified model using an α = 
1.0 (compressive strain = 1.5 mm/m). 

 

 
Figure 10 – Stress-strain and stiffness-strain curve for the 
modified model with α = 1.0. 
 

 



 

 
Figure 11 – Beams broken for the modified model using an α = 
0.5 (compressive strain = 1.9 mm/m). 
 

 

 
Figure 12 – Same model presented in the figure 11 but for a 
compressive strain of  2.1 mm/m. 
 

 

 
Figure 13 – Same model presented in the figure 11 but for a 
compressive strain of 3.0 mm/m. 
 

 
Figure 14 – Stress-strain and stiffness-strain curve for the 
modified model with α = 0.5. 

 
Until now for all the models the horizontal 
deformations were restrained at the top and bottom 
side, where the load is applied, which introduces a 
high friction between sample and loading plates. In 
the following example (Figs. 15-16) the horizontal 
restrains were released (boundary conditions of 
Figure 2b). As shown in figure 15, the main cracks 
are now more oblique to the model top and bottom 
sides. Secondary vertical cracks may also be 
observed. At this development phase the model 
cannot simulate completely vertical cracks, like the 
ones that may be observed for some materials when 
subjected to these boundary conditions. The initial 
modulus of elasticity and the peak compression 
stress are approximately the same, but the model 
behaviour is now more brittle as shown by the 
abrupt loss of stiffness in Figure 16. 

 
 
 

 
Figure 15 -– Beams broken for the modified “unrestrained” 
model using an α = 0.5 (compressive strain = 2.0 mm/m). 

 



 
Figure 16 – Stress-strain and stiffness-strain curve for the 
modified “unrestrained” model with α = 0.5. 

 

5 CONCRETE COMPOSITE MODEL 

The next examples illustrate the ability of the lattice 
model to simulate the damage behaviour of concrete 
considered as a composite material consisting of 
mortar and aggregates. Aggregates are conceptually 
simulated in 2D as circles of two sizes. Real images 
of concrete cross sections can also be used. This 
image is then scanned by the model “pixel by pixel”. 
If the starting and ending point of a beam is found 
inside an aggregate, the beam is marked as 
“aggregate”. The same procedure applies for the 
mortar. Beams with one point inside an aggregate 
and the other inside mortar are marked as belonging 
to the interfacial zone. The resulting model is 
labelled “concrete composite model” and is shown 
in Figure 17. 

For the beams belonging to the mortar phase, the 
properties used in the previous examples (section 2) 
are used. For the aggregate phase, the elastic 
modulus and limit stress (σlim) are those of mortar 
multiplied by a factor of 2, and for the interface 
zone, the mortar properties are divided by a factor of 
2. This choice of beam properties of the different 
phases illustrates a “strong aggregate – average 
mortar – weak interface” type of concrete. 

 
Figure 17 – Lattice model of the concrete composite. The 
linethickness of the beams is proportional to their limit stress 
(σlim). 

Figure 18 shows that the resulting crack pattern is 
similar to the “homogenous” case of Figure 13. First 
left and right sides of the specimen will detach, 
followed by an extensive cracking at the centre of 
the model. The cracks tend now to follow the 
aggregate/mortar interfaces. Also, occasional 
aggregate cracking occurs, especially for larger 
aggregates near the corners or in the centre of the 
specimen. Comparing the stress-strain and stiffness-
strain curves (figure 19) of concrete with the curves 
of plain mortar (figure 14), we observe that the 
initial stiffness drops from 25 to 18 GPa and that the 
stiffness decays faster due to the weak interface 
between mortar and aggregate. The maximum stress 
drops from 40 to 30 MPa attaining almost the same 
value of strain. After reaching peak stress, the 
stiffness decrease is more abrupt, so the concrete 
model behaves more brittle. 

 
 

 
Figure 18 - Beams broken for a concrete composite model 
using an α = 0.5 (compressive strain = 3.0 mm/m). 

 
 
 

 
Figure 19 – Stress-strain and stiffness-strain curves for the 
concrete composite model with α = 0.5. 

 
 
 
 



If the “unrestrained” boundary conditions are 
imposed, the crack pattern consists of oblique cracks 
following the ‘weak’ interfaces between mortar and 
aggregate (figure 20). Note that in this case of 
unrestrained boundary conditions the aggregates 
remain almost damage free. Comparing with the 
“homogenous” case (figure 15), the main cracks are 
now more vertical, which can be attributed to the 
presence of the aggregates, which seem to divert the 
cracks to an angle closer to the vertical. Figure 21 
shows, as for the “homogenous” case, that the model 
behaves quite brittle. However, the change of the 
boundary conditions from restrained to unrestrained 
produces more noticeable differences on the initial 
stiffness and peak stress of the concrete model when 
compared with the homogeneous case. The initial 
stiffness increases from 18 to 21 GPa, and the peak 
stress decreases from 30 to 26 MPa. 

 
 

 
Figure 20 - Beams broken for a concrete composite 
“unrestrained” model using an α = 0.5 (compressive strain = 
3.0 mm/m). 

 
 

 
Figure 21 – Stress-strain and stiffness-strain curves for the 
concrete composite “unrestrained” model with α = 0.5. 

 
 
 
 

6 CONCLUSIONS AND FUTURE 
DEVELOPMENTS 

By the introduction of an extra step in the beams 
stiffness withdrawal, we have shown that the 
behaviour of the lattice model significantly improves 
for the simulation of cracking in compression. 
Although the number of calculations increases, the 
results presented in this paper are promising, as 
damage localisation is now likely to happen, giving 
realistic crack patterns. 

For simulation of the tensile behaviour, the lattice 
model remains unchanged, because the two-step 
removal of the stiffness occurs for the same beam in 
two successive calculations. We conclude that the 
improvement of the model does not lead to 
fundamental changes to the lattice procedure, only 
some computational time is added. The simplicity of 
the lattice model is maintained, which is essential 
due to the large number of beam elements required.  

Although the modified lattice model is able to 
retain some load transfer capacity and stiffness after 
reaching the peak stress the behaviour is still too 
brittle compared to the behaviour observed in real 
laboratory compression tests (Fig. 22). With the 
present formulation of the lattice model still more 
ductile behaviour is quite hard to attain. An 
alternative under investigation is the use of a 3D 
lattice with the modified lattice formulation. 

The use of local softening on the elements has 
proven to be a valid way of obtaining a more ductile 
behaviour (Arslan et al. 2002, Bolander & Sukumar 
2005) but the simplicity of the lattice model will be 
lost. 

 
 

 
Figure 22 – Comparison between the laboratory test and the 
simulation with the modified lattice model. 
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