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ABSTRACT: A defect is simulated as an abrupt change of elastic properties in the material and the conservation
laws, discovered by Knowles and Sternberg, are deduced and extended on the basis of a general formula for the
dissipation, associated with the propagation of elastic phase transition fronts, recently contributed. Moreover,
by removing the assumptions of a homogeneous elastic medium, under homogeneous anelastic deformation and
no body forces, further invariance conditions, suitable for the evaluation of the dissipation associated with an
evolving defect, are provided.

1 INTRODUCTION
Defect propagation in continuous bodies is a topic of
major interest in fracture mechanics both from the
theoretical, the applied and the computational point of
view. According to Eshelby (Eshelby, 1975), a defect
is an elastic inhomogeneity while, according to Mau-
gin (Maugin, 1993), a defect creates a singularity in
the elastic field. In evaluating the elastic release rate
induced by defect’s propagation in a material, a defect
can be effectively simulated as an abroupt change of
elastic properties. Its evolution is thus described by
the motion of a shock wave front on which the elas-
tic phase transition occurs (Romano et al., 2005). In-
deed, across the front the displacement field is con-
tinuous while its derivative may undergo a disconti-
nuity jump. When the propagation of a defect is de-
scribed by a rigid body motion of a shock wave front,
the characteristic vectors associated with the elastic
release rate may be defined by duality. Several treat-
ments based on Eshelby’s energy-momentum tensor,
and concerning the evaluation of the force acting on
defects traveling in an elastic medium, are reported
in the literature. Eshelby’s formula (Eshelby, 1951),
(Eshelby, 1970), (Eshelby, 1975) for the evaluation
of the force acting on a defect was based on subse-
quent cut and fitting after a rigid translation of a sur-
face embodying the defects. Maugin (Maugin, 1993)
has provided a proof of this formula, making refer-
ence to Eshelby’s treatment. Here the general formula
contributed in (Romano et al., 2005) is applied to
the evaluation of the dissipation associated with the
evolution of translating, rotating and homothetically
transforming defects in a multi-phase material body.
In this context, some conservation laws (Knowles and

Sternberg, 1972) are discussed and subsequently ex-
tended. These laws are then specialized by performing
a geometrically linearized analysis in agreement with
(Knowles and Sternberg, 1972), (Green, 1973), (Bu-
diansky and Rice, 1973). In Appendix it is shown that,
in an isotropic elastic medium, the Eshelby’s energy-
momentum tensor is symmetric. This property plays a
foundamental role in the evaluation of the dissipation
associated with a rotating defect.

2 DISSIPATION FORMULA DUE TO ELASTIC
PHASE-TRANSITION PHENOMENA

Let {S,g} be the euclidean space with the standard
inner product. Let us denote by M ⊂ S and ϕ(M) ,
with ϕ ∈ C1(M ;S) , two placements of a body mod-
eled as a 3-D CAUCHY’s continuum. To get a gen-
eral picture of an elastic multi-phase material body,
we consider a partition of the reference configuration
into a finite family T (M) of open non-overlapping
domains, such that the union of their closures covers
M . Each element P of the partition T (M) is made
of a single-phase material whose elastic properties are
described by a free energy density:

Wm(D(ϕ)m,∆m) ∀m ∈ P .

Denoting by dϕ(m) the differential of the config-
uration map at m ∈ M , D(ϕ)m := (dϕT dϕ)m is the
Piola-Green operator and ∆m is a symmetric opera-
tor which describes the anelastic deformation. Elas-
tic phase-transition phenomena, modeled as abrupt
changes of the elastic properties of the material across
discontinuity surfaces (shock waves) propagating in
the body, are described by a flow χτ,t ∈ C1(M ;M)



which modifies the reference partition T (M) at time
t into an evolving one Tτ (M) := χτ,t(Tt(M)) at time
τ ∈ I . Dropping the dependence on the point m , we
write the free energy density as:

Wτ := W (D(ϕ)τ ,∆τ ) τ ∈ I ,

in which D(ϕ)τ and ∆τ are the Piola-Green op-
erator and the anelastic deformation at the time τ .
At each point m of the elements Pτ of the parti-
tion Tτ (M) , the time-derivative Ẇ := ∂τ=t Wτ can
be evaluated as:

Ẇ = 〈d1W,∂τ=t D(ϕ)τ 〉g + 〈d2W,∂τ=t ∆τ 〉g

= 〈d1W, Ḋ(ϕ)〉g + 〈d2W,∆̇〉g ,

where 〈·, ·〉g is the inner product between linear op-
erators induced by the metric g and diW ,i = 1 ,2
are the partial gradients. By imposing the constitutive
requirement: S := d1W (symmetric Piola-Kirchhoff
stress) and Sa := −d2W (symmetric anelastic stress)
we get:

Ẇ = 〈S, Ḋ(ϕ)〉g − 〈Sa,∆̇〉g .

In the sequel we denote by I(M) the set of
phase-transition interfaces in which the interface be-
tween the element P− and P+ is assumed oriented
as boundary of the P− element and by [[W ]] :=
[[Wt]] = W+ − W− the jump across I(M) (Fig.
1). The dissipation associated with the motion of the

Figure 1. Phase transition interface.

shock wave and with the anelastic deformation can be
evaluated on the basis of Maxwell’s and Hadamard’s
kinematic conditions and is given by (Romano et al.,
2005):

D=

∫
I(M)

g([[W ]]n , χ̇)µn

−
∫
I(M)

g(Pn , [[dϕ]] χ̇)µn +

∫
T (M)

〈Sa,∆̇〉g µ

=

∫
I(M)

g([[Y]]n , χ̇)µn +

∫
T (M)

〈Sa,∆̇〉g µ ,

where P := dϕS is the Piola operator, Y := W I−
dϕT P is Eshelby’s energy-momentum tensor, χ̇ :=
∂τ=t χτ,t and µn is the area form resulting from the
contraction of the volume form µ and the normal
n = n− . The vanishing of the divergence of the Es-
helby’s energy-momentum tensor in each phase of the
multi-phase material is at the basis of the invariance
properties that will be discussed in the next sections.
The general expression of the divergence is given by
(Romano et al., 2005):

g(div Y,h)= g(d3W,h)

−〈Sa, dh∆〉g + g(b, dhϕ) ,

∀h ∈ TmM .

Accordingly, in a homogeneous elastic phase, un-
der homogeneous anelastic deformation and no body
forces we have that div Y = 0 .

3 DEFECTS
The expressions of the dissipation associated with
translating, rotating and homothetically transforming
defects in an elastic medium can be obtained by spe-
cializing the general formula provided in section 2. To
simplify the exposition we will assume that ∆̇ = 0 .

3.1 Translating defect
Let us consider a defect Z ⊂ M propagating in an
elastic medium M with a translational velocity field
χ̇(x) = χ̇d , with d unit vector. The associated dissi-
pation is given by:

D =

∫
∂Z

g([[Y]]n, χ̇) µn = χ̇

∫
∂Z

g([[Y]]n,d) µn .

Writing the dissipation as F χ̇ , the driving force F
is defined by:

F =

∫
∂Z

g([[Y]]n,d) µn

=

∫
∂Z

g([[W ]]n,d) µn−
∫

∂Z
g(Tn, [[ddu]]) µn .

3.2 Rotating defect
Let us now consider the case when the velocity field
is rotational: χ̇(x) = ω × x ∀x ∈ Z with angular
speed ω = ω k , where k is an unit vector. The sym-
bol × denotes the cross product operation defined by
g(ω × x) := µω x , in which µω x is the one-form
resulting from the contraction of the volume three-
form µ and the vectors ω and x . The dissipation
is then given by:

D=

∫
∂Z

g([[Y]]n, χ̇) µn =

∫
∂Z

g([[Y]]n, ω k× x) µn

=

∫
∂Z

µω x [[Y]]n µn = ω

∫
∂Z

µk x [[Y]]n µn .



Writing the dissipation D as M0 ω , the driving
couple M0 is:

M0 =

∫
∂Z

µk x [[Y]]n µn .

3.3 Homothetically transforming defect
For a homothetically transforming defect with veloc-
ity field χ̇(x) = αx ∈ Z , in which α is a scalar, the
dissipation is given by:

D =

∫
∂Z

g([[Y]]n, χ̇) µn = α

∫
∂Z

g([[Y]]n,x) µn .

4 INVARIANCE CONDITIONS
Let us summarize hereafter some preliminary results
that will be referred to in the sequel.

Proposition 4.1 For any domain C of a reference
placement M , in absence of body forces (i.e. div P =
0 ) we have that:∫

∂C
(Pn)(x)×ϕ(x) µn = 0 .

Proof. By the divergence theorem and subsequent
integration by parts, we have that:∫

∂C
(Pn)(x)×ϕ(x) µn=

∫
C
(div P)(x)×ϕ(x) µ

+

∫
C

axial skew (PdϕT )(x) µ .

By the symmetry of the tensor PdϕT = dϕSdϕT the
last integral vanishes. Moreover, being div P = 0 , the
first integral at the r.h.s. vanishes too and the result is
proven.

Proposition 4.2 In an isotropic elastic medium M ,
for any domain C ⊂ M in which div Y = 0 , we have:∫

∂C
(Yn)(x)× x µn=

∫
∂C

(Wn)(x)× x µn

−
∫

∂C
(dϕT Pn)(x)× x µn = 0 .

Proof. By the divergence theorem and subsequent
integration by parts, we have that:∫

∂C
(Yn)(x)× x µn=

∫
C
(div Y)(x)× x µ

+

∫
C

axial skew Y(x) µ .

At the r.h.s. the first integral vanishes being by as-
sumption div Y = 0 and the second integral vanishes

since in a isotropic elastic medium skew Y = 0 by
Lemma 6.2 in Appendix.

By propositions 4.1 and 4.2 we deduce (Knowles
and Sternberg, 1972):

Proposition 4.3 In an isotropic elastic medium M ,
for any domain C ⊂ M in which div Y = 0 and
div P = 0 (absence of body forces), we have:∫

∂C
(Yn)(x)× x µn +

∫
∂C

(Pn)(x)×ϕ(x) µn

=

∫
∂C

(
(Wn)(x)× x− (dϕT Pn)(x)× x

+(Pn)(x)×ϕ(x)
)

µn = 0 .

Proposition 4.4 In an elastic medium M , for any do-
main C ⊂ M in which div Y = 0 and div P = 0 (ab-
sence of body forces), we have:∫

∂C
g(Yn,x) µn +

∫
∂C

g(Pn,ϕ(x)) µn = 3

∫
C
W µ .

Proof. By the divergence theorem and subsequent
integration by parts, we have that:∫

∂C
g(Yn,x) µn =

∫
C

g(div Y,x) µ +

∫
C
〈Y, I〉g µ .

At the r.h.s. the first integral vanishes being by as-
sumption div Y = 0 . Substituting the expression Y =
W I− dϕT P in the second integral and observing that
〈W I, I〉g = 3W , we get:∫

∂C
g(Yn,x) µn=

∫
C
〈W I, I〉g µ−

∫
C
〈dϕT P, I〉g µ

= 3

∫
C
W µ−

∫
C
〈P, dϕ〉g µ .

Moreover, being div P = 0 we have that:

−〈P, dϕ〉g = g(div P,ϕ(x))− div (PT ϕ(x))

= −div (PT ϕ(x)) ,

and hence:∫
∂C

g(Yn,x) µn= 3

∫
C
W µ−

∫
C
〈P, dϕ〉g µ

= 3

∫
C
W µ−

∫
C

div (PT ϕ(x)) µ

= 3

∫
C
W µ−

∫
∂C

g(PT ϕ(x),n) µn

= 3

∫
C
W µ−

∫
∂C

g(Pn,ϕ(x)) µn .

This result is in agreement with the formula 2.10 re-
ported in (Green, 1973).



4.1 Small displacement formulation
Many engineering applications can be dealt with by
a geometrically linearized formulation. To special-
ize the previous invariance conditions to this im-
portant class of problems, it is convenient to re-
formulate the analysis in terms of the displacement
field u ∈ C0(M ;TS) ∩ C1(T (M) ;TS) defined by
u(x) := ϕ(x) − x , so that du = dϕ − I in T (M) .
For the jump across the phase-transition interfaces I
we have the equality [[du]] = [[dϕ]] and hence the
Eshelby’s stress tensor can be equivalently defined in
terms of displacement field as

Yu := W I− duT P = W I− dϕT P + P = Y + P ,

with [[Yu]]n = [[Y]]n since [[Pn]] = 0 . In the geo-
metrically linearized theory, the reference and the ac-
tual placements of the body are taken to be coincident
so that the Piola stress P and the Cauchy stress T
may be identified. Accordingly the Eshelby’s energy-
momentum tensor takes the form

Yu = W I− duT T ,

and its divergence is given by (Romano and Barretta,
2007):

g(div Yu,h) = g(d3W,h)− 〈SM, dh∆〉g + g(b, dhu) .

Proposition 4.5 In an isotropic elastic medium M ,
for any domain C ⊂ M in which div Yu = 0 and
div T = 0 (absence of body forces), we have:∫

∂C
(Yun)(x)× x µn +

∫
∂C

(Tn)(x)× u(x) µn =∫
∂C

(
(Wn)(x)× x− (duT Tn)(x)× x

+(Tn)(x)× u(x)
)

µn = 0 .

Proof. Being dϕ = du + I and ϕ(x) = u(x) + x ,
by proposition 4.3 a direct computation proves the
statement:∫

∂C

(
(Wn)(x)× x− (dϕT Pn)(x)× x

+(Pn)(x)×ϕ(x)
)

µn =∫
∂C

(
(Wn)(x)× x− (duT Tn)(x)× x− (Tn)(x)× x+

(Tn)(x)× u(x) + (Tn)(x)× x
)

µn =∫
∂C

(
(Wn)(x)× x− (duT Tn)(x)× x

+(Tn)(x)× u(x)
)

µn = 0 ∀C ⊂ M .

This result is in agreement with the formula 2b re-
ported in (Budiansky and Rice, 1973) on page 202.

Proposition 4.6 In a linearly elastic medium M , for
any domain C ⊂M in which div Yu = 0 and div T =
0 (absence of body forces), we have:∫

∂C

(
g(Yun,x)− 1

2
g(Pn,u)

)
µn = 0 .

Proof. Being dϕ = du + I and ϕ(x) = u(x) + x ,
a direct computation shows that:∫

∂C
g(Yn,x) µn=

∫
∂C

g(Wn,x) µn

−
∫

∂C
g(dϕT Pn,x) µn

=

∫
∂C

g(Wn,x) µn

−
∫

∂C
g(duT Pn,x) µn

−
∫

∂C
g(Pn,x) µn ,

∫
∂C

g(Pn,ϕ(x)) µn=

∫
∂C

g(Pn,x) µn

+

∫
∂C

g(Pn,u) µn .

Moreover by Clapeyron’s theorem and in absence of
body force we have:

3

∫
C
W µ =

3

2

∫
∂C

g(Pn,u) µn .

Finally, by lemma 4.4 the relation∫
∂C

g(Yn,x) µn +

∫
∂C

g(Pn,ϕ(x)) µn = 3

∫
C
W µ

becomes:∫
∂C

(
g(Yun,x)− 1

2
g(Tn,u)

)
µn = 0 .

The result is in agreement with the formula 3.19
of Knowles and Sternberg reported in (Knowles and
Sternberg, 1972) on page 198.

Remark 4.1 Let us consider a closed surface S ⊂M
enclosing a defect Z and let C be the domain whose
boundary is ∂C = S ∪ ∂Z . Assuming that div Yu =
0 in C , by the divergence theorem it follows that the
integral

J =

∫
S

(
(Wn)(x)− (duT Tn)(x)

)
µn



is independent of S . Moreover, if div T = 0 (absence
of body forces) in C , then

M =

∫
S

(
g((Wn)(x),x)− g((duT Tn)(x),x)

−1

2
g((Pn)(x),u(x))

)
µn

is independent of S (see proposition 4.6). The fur-
ther assumption of an isotropic medium M , leads to
the natural definition of the S-invariant integral (see
proposition 4.5):

L=

∫
S

(
(Wn)(x)× x− (duT Tn)(x)× x

+(Tn)(x)× u(x)
)

µn .

These integrals are known in the literature as con-
servation theorems (Knowles and Sternberg, 1972),
(Budiansky and Rice, 1973). Their validity is sub-
ject to the assumptions of a homogeneous elastic
medium, under homogeneous anelastic deformation
and no body forces (i.e. div Yu = 0 (Romano et al.,
2005)). In the next section we remove the hypothesis
that div Yu = 0 in M and further invariance condi-
tions for the evaluation of the dissipation associated
with a transforming defect are provided.

5 SPECIAL INSTANCES
Example 1

Let us consider a crack-like defect Z translating in
an elastic medium M characterized by the property:

(div Y)(x) = 0 ∀x ∈ Z .

Then, being∫
∂Z

g(Y−n,d) µn =

∫
Z

g(div Y,d) µ = 0 ,

the driving force (see subsection 3.1) is given by:

F =

∫
∂Z

g([[Y]]n,d) µn

=

∫
∂Z

g(Y+n,d) µn−
∫

∂Z
g(Y−n,d) µn

=

∫
∂Z

g(W+n,d) µn−
∫

∂Z
g(Tn, ddu+) µn .

The following result then holds:

Proposition 5.1 In an elastic medium M , for any
closed surface Σ enclosing a translating defect Z ⊂

M and n elastic phases Pi ⊂M (Fig. 2), the driving
force acting on Z is given by:

F = J(Σ)−
n∑

i=1

∫
∂Pi

g(Yn,d) µn

−
∫

C(Σ)

g(div Y,d) µ

= J(Σ)−
n∑

i=1

∫
∂Pi

g(Yn,d) µn

−
∫

C(Σ)

g(d3W,d)µ

+

∫
C(Σ)

〈Ta, dd∆〉g µ−
∫

C(Σ)

g(b, ddu)µ ,

where C(Σ) is a domain of M whose boundary
∂C(Σ) = ∂Z ∪Σ∪n

i=1 ∂Pi and

J(Σ) :=

∫
Σ

g(Yn,d) µn

is the J-integral (Rice, 1968) associated with the sur-
face Σ (it is the projection along the unit vector d of
the vector integral J defined in remark 4.1):

Figure 2. Translating defect.

Proof. The divergence theorem and the formula for
div Y of section 2, give:∫

C(Σ)

g(div Y,d) µ =

∫
∂C(Σ)

g(Yn,d) µn

= −F + J(Σ)−
n∑

i=1

∫
∂Pi

g(Yn,d) µn

=

∫
C(Σ)

g(d3W,d)µ

−
∫

C(Σ)

〈Ta, dd∆〉g µ +

∫
C(Σ)

g(b, ddu)µ ,

and the result follows.



Remark 5.1 By considering a homogeneous elastic
domain C(Σ) , under homogeneous anelastic defor-
mation and no body forces (i.e. div Y = 0 ) the for-
mula of proposition 5.5 becomes:

F = J(Σ)−
n∑

i=1

∫
∂Pi

g(Yn,d) µn .

This result is in agreement with the formula provided
by Kikuchi and Miyamoto (Kikuchi and Miyamoto,
1982) and quoted by Brocks and Scheider (Brocks and
Scheider, 2001) in establishing a Σ-independence
condition for the evaluation of the driving force as-
sociated with defects propagating in composite mate-
rials or in welded structures.

Example 2
Let us consider a defect Z rotating in an isotropic

elastic medium M characterized by the property:

(div Y)(x) = 0 ∀x ∈ Z .

Then, by proposition 4.2 being∫
∂Z

(Y−n)(x)× x µn = 0 ,

the driving couple (see subsection 3.2) is given by:

M0 =

∫
∂Z

µk x [[Y]]n µn = −
∫

∂Z
µ ([[Y]]n)x k µn

= −
∫

∂Z
g([[Y]]n× x,k) µn

=

∫
∂Z

g(Y−n× x,k) µn−
∫

∂Z
g(Y+n× x,k) µn

= −
∫

∂Z
g(Y+n× x,k) µn .

By removing the assumption that div Y = 0 in
proposition 4.2, we have that:

Proposition 5.2 In an isotropic elastic medium in its
reference configuration M , for any domain C ⊂ M ,
the following invariance condition holds:∫

∂C
(Yn)(x)× x µn−

∫
C
(div Y)(x)× x µ = 0 .

A further result is the following:

Proposition 5.3 In an isotropic elastic medium M ,
for any closed surface Σ enclosing a rotating defect
Z ⊂ M and n elastic phases Pi ⊂ M (Fig. 3), the
driving couple acting on Z is given by:

M0 = −B(Σ) +
n∑

i=1

∫
∂Pi

g((Y+n)(x)× x,k) µn

+

∫
C(Σ)

g((div Y)(x)× x,k) µ ,

where C(Σ) is a domain of M whose boundary
∂C(Σ) = ∂Z ∪Σ∪n

i=1 ∂Pi and

B(Σ) :=

∫
Σ

g((Yn)(x)× x,k) µn

is the B-integral associated with the surface Σ (this
definition naturally follows by proposition 4.2).

Figure 3. Rotating defect.

Proof. Being ∂C(Σ) = ∂Z ∪Σ∪n
i=1 ∂Pi , the propo-

sition 5.2 provides:

−
∫

∂Z
g((Y+n)(x)× x,k) µn

+

∫
Σ

g((Yn)(x)× x,k) µn

−
n∑

i=1

∫
∂Pi

g((Y+n)(x)× x,k) µn

−
∫

C(Σ)

g((div Y)(x)× x,k) µ = 0 ,

and obseving that:

M0 = −
∫

∂Z
g(Y+n× x,k) µn ,

B(Σ)=

∫
Σ

g((Yn)(x)× x,k) µn ,

the result follows.
Example 3

Let us consider a defect Z homothetically trans-
forming in an elastic medium M characterized by the
property:

(div Y)(x) = 0 ∀x ∈ Z .

Then, by proposition 4.4 being∫
∂Z

g(Y−n,x) µn = 3

∫
Z

W µ−
∫

∂Z
g(Pn,ϕ(x)) µn .



the dissipation (see subsection 3.3) is given by:

D= α

∫
∂Z

g([[Y]]n,x) µn

= α

∫
∂Z

g(Y+n,x) µn− α

∫
∂Z

g(Y−n,x) µn

= α

∫
∂Z

g(Y+n,x) µn

−3α

∫
Z

W µ + α

∫
∂Z

g(Pn,ϕ(x)) µn .

By removing the assumption that div Y = 0 in propo-
sition 4.4 we have that:

Proposition 5.4 Let us consider an elastic medium
M . In absence of body force (i.e. div P = 0 ) in M
then for any domain C ⊂ M we have:∫

∂C
g(Yn,x) µn= 3

∫
C
W µ +

∫
C

g(div Y,x) µ

−
∫

∂C
g(Pn,ϕ(x)) µn .

A further result is the following:

Proposition 5.5 In an elastic medium M , for any
closed surface Σ enclosing a homothetically trans-
forming defect Z ⊂M and n elastic phases Pi ⊂M
(Fig. 4), the dissipation D associated with the evolu-
tion of Z is given by D = αD , where:

D=

∫
∂Z

g((Y+n)(x),x) µn

−3

∫
Z

W (x) µ +

∫
∂Z

g((Pn)(x),ϕ(x)) µn

=

∫
Σ

g((Yn)(x),x) µn

−
n∑

i=1

∫
∂Pi

g((Y+n)(x),x) µn

−3

∫
C(Σ)

W (x) µ−
∫

C(Σ)

g((div Y)(x),x) µ

−
∫

Σ

g((Pn)(x),ϕ(x)) µn

−
n∑

i=1

∫
∂Pi

g((Pn)(x),ϕ(x)) µn

−3

∫
Z

W (x) µ ,

in which C(Σ) is the domain of M whose boundary
is ∂C(Σ) = ∂Z ∪Σ∪n

i=1 ∂Pi .

Figure 4. Homothetically transforming defect.

Proof. Being ∂C(Σ) = ∂Z ∪Σ∪n
i=1 ∂Pi , the propo-

sition 5.4 provides:

−
∫

∂Z
g((Y+n)(x),x) µn

+

∫
Σ

g((Yn)(x),x) µn−
n∑

i=1

∫
∂Pi

g((Y+n)(x),x) µn

= 3

∫
C(Σ)

W (x) µ +

∫
C(Σ)

g((div Y)(x),x) µ

−
(
−

∫
∂Z

g((Pn)(x),ϕ(x)) µn

+

∫
Σ

g((Pn)(x),ϕ(x)) µn

−
n∑

i=1

∫
∂Pi

g((Pn)(x),ϕ(x)) µn
)
,

and observing that:

D=

∫
∂Z

g((Y+n)(x),x) µn

−3

∫
Z

W (x) µ +

∫
∂Z

g((Pn)(x),ϕ(x)) µn ,

the result follows.

6 APPENDIX
Lemma 6.1 In an isotropic elastic medium the
eigenspaces of the Piola-Kirchhoff stress S and of the
Piola-Green operator D(ϕ) = dϕT dϕ coincide.

Proof. Let us consider an eigenvector e ∈ TmM of
D(ϕ) ∈ C1(TmM ;TmM) so that D(ϕ)e = λ e and let
Re ∈ Orth (TmM ;TmM) be the reflection across the
plane perpendicular to e . Setting Πe = I− e⊗ e , we
have that

Re e = −e , Re Πe e = Πe e .

By the spectral decomposition of D(ϕ) :

D(ϕ) =
3∑

i=1

λi ei ⊗ ei ,



with e1 = e and { e1, e2, e3 } basis of eigenvec-
tors, follows that Re D(ϕ)RT

e = D(ϕ) (i.e. Re and
D(ϕ) commute). Moreover, by assumption, being
S = ∂W (D(ϕ)) an isotropic law:

Re ∂W (D(ϕ))RT
e = ∂W (Re D(ϕ)RT

e )

for any D(ϕ) ∈ C1(TmM ;TmM) and for any Re ∈
Orth (TmM ;TmM) , we infer that:

Re ∂W (D(ϕ))RT
e = ∂W (Re D(ϕ)RT

e ) = ∂W (D(ϕ)) ,

so that Re commutes with S = ∂W (D(ϕ)) . Accord-
ingly, since

Re ∂W (D(ϕ)) e = ∂W (D(ϕ))Re e =−∂W (D(ϕ)) e ,

it follows that ∂W (D(ϕ)) e = α e , with α ∈ R .
Therefore every eigenvector of D(ϕ) is an eigenvec-
tor of S .

Lemma 6.2 In an isotropic elastic medium the Es-
helby stress tensor Y = W I− dϕT P is symmetric.

Proof. By lemma 6.1 we write:

D(ϕ) e = α e , Se = β e , α, β ∈ R ,

and a direct computation shows that

D(ϕ)S e = αβ e
S D(ϕ) e = αβ e .

Therefore the operators S and D(ϕ) commute:

D(ϕ)S = S D(ϕ) ,

that is dϕT dϕS = SdϕT dϕ . Being P = dϕS and
S = ST , we infer that dϕT P is symmetric.

7 CONCLUSIONS
The dissipation associated with the evolution of a
translating, rotating or homothetically transforming
defect in a multi phase material is evaluated. The
analysis is carried out by simulating a defect as an
abrupt change of elastic properties in a material and
describing its evolution as an elastic phase transi-
tion phenomenon. Some conservation laws, due to
Knowles and Sternberg, are suitably extended to in-
clude more general situations in which the inhomo-
geneity of the elastic properties or of the anelastic de-
formation leads to a non-vanishing divergence of the
energy-momentum tensor.
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