
Thermodynamics framework for robust computations of loading-induced
anisotropic damage

R. Desmorat, F. Gatuingt & F. Ragueneau
LMT-Cachan, ENS Cachan / Univ. Paris 6 / CNRS
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ABSTRACT: Many anisotropic damage models have been proposed for different materials, including concrete.
The main drawback of the corresponding analyses is that a large number of material parameters is often intro-
duced, leading to identification difficulties but also to model complexity and associated numerical difficulties.
It is also sometimes difficult to ensure the continuity of thestresses if the quasi-unilateral effect of microcracks
closure and the dissymmetry tension/compression are represented. We consider here an anisotropic damage
model with a restricted number of material parameters (5 including the Young’s modulus and Poisson’s ra-
tio of the initially isotropic material) and built in the thermodynamics framework. The large dissymmetry of
tension/compression response of concrete is due to the loading induced damage anisotropy. A non standard
thermodynamics framework is used with damage states represented by a symmetric second order tensor and
with a damage rate governed by the positive part of the straintensor. The proof of the positivity of the intrinsic
dissipation is given for any damage law ensuring (anisotropic) damage increase – in terms of positive princi-
pal values of the damage rate tensor. This extends then to induced anisotropy the isotropic case property of a
positive damage rate. Altogether with the fact that the thermodynamics potential can be continuously differen-
tiated, the considered anisotropic damage model allows forrobust Finite Element implementation. Both space
and time regularizations are used and applied to quasi-static and dynamic cases. Examples on concrete and
reinforced concrete structures are given, with the consideration of either nonlocal Mazars criterion or of Mazars
criterion regularized with viscous damage.

1 INTRODUCTION
In standard thermodynamics framework (Halphen
and Nguyen, 1975) both the state and the evolution
laws derive from potentials, Gibbs free enthalpyρψ⋆

written in terms of stressσσσ in the present work for
the first one, a dissipation or pseudo-dissipation po-
tential for the second one. The elasticity law and the
strain energy release rate densityYYY , variable associ-
ated withDDD, are respectively gained as the derivative
of the state potential with respect to the elastic strain
tensorǫǫǫe and with respect to the damage tensorDDD. In
the standard framework of thermodynamics a pseudo-
dissipation potential quadratic function ofYYY is most
often considered, the damage law taking the form

ḊDD = λ̇ JJJ : YYY (1)

with λ̇ a positive multiplier andJJJ a positive fourth or-
der tensor, eventually nonlinear function of the ther-
modynamics variables, so that the dissipationD =

YYY : ḊDD = λ̇ YYY : JJJ : YYY due to the degradation mecha-
nisms remains positive for any kind of loading. The
choice of damage laws of the form (1) is very restric-
tive, for instance concerning the possibility to model
induced anisotropy directly driven by the strains or
the stresses. But, as we will illustrate on numerical
examples, to ensure the positivity of the intrinsic dis-
sipation also has good numerical properties.

2 NON STANDARD ANISOTROPIC FRAME-
WORK

A general form for the strain energy coupled with
anisotropic damage has been proposed by Ladevèze
(Ladevèze, 1983; Lemaitre and Desmorat, 2005), as

ρψ⋆ =a1 tr (HHHσσσHHHσσσ) + a2 σσσ : σσσ

+ a3 g(DH)(tr σσσ)2 + a4 (tr σσσ)2

(2)

withHHH = (111−DDD)−1/2 a symmetric tensor andDH =
1

3
tr DDD, whereg(DH) is a positive increasing function



of DH , 1/(1 − ηDH) for example, and where theai

(a1 ≥ 0, a3 ≥ 0) as well asη > 0 are material parame-
ters. The first term of Eq. (2) can take different – non
equivalent – forms (Ladevèze, 1983; Papa and Talier-
cio, 1996; Lemaitre and Desmorat, 2005),
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allowing in the last case for the mechanical rep-
resentation of the quasi-unilateral effect of micro-
defects closure, withσσσ+ (resp.σσσD

+) a special posi-
tive part (Ladevèze, 1983; Desmorat, 2000) built from
the eigenvalues and the eigenvectors ofHHHσσσ (resp. of
HHHσσσD) and with〈.〉

−
the negative part in terms of prin-

cipal components of a tensor. Two examples of strain
energy densities are a first one based on a splitting
deviatoric / hydrostatic quantities (withE andν the
Young’s modulus and Poisson’s ratio of the undam-
aged material),

ρψ⋆ =
1 + ν

2E
tr
(

HHHσσσDHHHσσσD
)

+
1− 2ν

6E

(tr σσσ)2

1− ηDH
(6)

a second one based on the feature of a constantν/E
ratio,

ρψ⋆ =
1

2E
tr (HHHσσσHHHσσσ) +

ν

2E

(

σσσ : σσσ− (tr σσσ)2
)

(7)

Concerning the evolution laws, many non stan-
dard damage laws can be formulated for induced
anisotropy (Mazars et al., 1990; Dragon and Halm,
1996; Lemaitre et al., 2000; Billardon and Pétry,
2005), with second order tensorial damage rate pro-
portional

• to the positive part of the strain tensor〈ǫǫǫ〉
+

or to
〈ǫǫǫ〉α

+
with α a damage exponent,

• to the absolute value of the plastic strain tensor
ǫ̇ǫǫp, to the positive part oḟǫǫǫp, or to any linear com-
binationα |ǫ̇ǫǫp|+ (1− α) 〈ǫ̇ǫǫp〉

+
,

• to a power2s of the stress tensor,

• to a linear combinationα 〈σσσ〉2
+

+ (1 − α) 〈σσσ〉2
−

(eventually at the powers) where to takeα = 1
will lead to the modeling of the unilateral dam-
age effect of no damage growth in compression,
and to take1/2 < α < 1 will lead to the mod-
eling of the quasi-unilateral damage effect of a
damage growth in compression smaller than in
tension.

Induced damage anisotropy governed by the posi-
tive extensions is adapted to quasi-brittle materials as
concrete. The other expressions will allow to gener-
alize to induced anisotropy Lemaitre’s damage law
Ḋ = (Y/S)sṗ of a damage rate governed by the ac-
cumulated plastic strain ratėp and enhanced by the
strain energyY = 1

2
ǫǫǫe :EEE : ǫǫǫe, withEEE Hooke’s tensor.

As possible generalization, one has

ḊDD =

(

Y

S

)s
[

α |ǫ̇ǫǫp|+ (1− α) 〈ǫ̇ǫǫp〉
+

]

(8)

ḊDD =

(

α 〈σσσ〉2
+

+ (1− α) 〈σσσ〉2
−

2ES

)s

ṗ (9)

whereE denotes the Young’s modulus andS ands
the damage parameters. For more details on ductile
damage, refer to (Lemaitre and Desmorat, 2005).

The next question will be wether one automatically
can ensure the positvity of the dissipation with the
simple feature of a positive (tensorial) damage rate
ḊDD.

3 POSITIVITY OF THE INTRINSIC DISSIPA-
TION

Previous elastic energy densities can be continuously
differentiated as

dρψ⋆ = ǫǫǫe : dσσσ+YYY : dDDD (10)

or

dρψ⋆ =[2a1 (HHHσσσHHH) + 2a2 σσσ + 2a3 g(DH) tr σσσ 111

+2a4 tr σσσ 111] : dσσσ+ 2a1 (σσσHHHσσσ) : dHHH

+
1

3
a3 g

′(DH)(tr σσσ)2 tr dDDD

(11)

leading to a dissipation due to damage mechanisms
expressed as

D =YYY : ḊDD= 2a1 (σσσHHHσσσ) : ḢHH+
1

3
a3 g

′(DH)(tr σσσ)2 tr ḊDD

(12)
For the elastic energy densities written with the terms
(3) or (5), the first term2a1 (σσσHHHσσσ) : ḢHH must be re-
placed by2a1

(

σσσDHHHσσσD
)

: ḢHH or 2a1 (σσσ+HHHσσσ+) : ḢHH or
2a1

(

σσσD
+HHHσσσ

D
+

)

: ḢHH. These terms are next synthetically
written 2a1 (sssHHHsss) : ḢHH. With any damage law lead-
ing to a positive damage rate tensor, i.e. with posi-
tives eigenvalues(ḊDD)J , the termtr ḊDD =

∑

3

J=1
(ḊDD)J

is positive so that1
3
a3 g

′(DH)(tr σσσ)2 tr ḊDD ≥ 0. It is
important to precise that the eigenvalues(ḊDD)J of ḊDD



are not the derivativeṡDJ of the eigenvalues ofDDD
(except in the particular case whereDDD andḊDD have the
same principal directions), the positivity of the eigen-
values(ḊDD)J nevertheless implies the increase of the
eigenvalues ofDDD.

Concerning the term2a1(sssHHHsss) : ḢHH, note that the
expressionHHH = (111 −DDD)−1/2 rewritten in terms of
principal components

HJ =
1√

1−DJ

(13)

gives positive increasing eigenvaluesHJ of tensorHHH
which is then also positive and increasing during any
damage process. The positivity of the symmetric ma-
trix (sssHHHsss) is gained by seeking the sign of its eigen-
values, denotedχ, solution of (sssHHHsss)~g = χ~g, with
~g the corresponding eigenvectors. The eigenvaluesχ
are equivalently solution of

(HHHsss)2~g = χHHH~g (14)

with obviously(HHHsss)2 a positive matrix. These eigen-
values take the form

χ =
~gT (HHHsss)2~g

~gTHHH~g
(15)

and, as ratio of positive terms, are positive. Last, the
tensorial product of two symmetric positive tensors
(sssHHHsss) andḢHH being positive, one can conclude to the
positivity of the intrinsic dissipationD for any damag-
ing loading, monotonic or not, uniaxial or multiaxial,
proportional or non proportional... at the simple con-
dition extended here to anisotropic damage that the
damage ratėDDD must remain a positive tensor. Consid-
ering conversely the set of states represented by de-
viatoric tensorsσσσ = σσσD, the dissipation reduced to
2a1 (sssHHHsss) : ḢHH ≥ 0 ∀ (sssHHHsss) ≥ 000 leads toḢHH ≥ 000,
therefore to the fact thaṫDDD ≥ 000 is a necessary and
sufficient condition for the positivity of the dissipa-
tion due to damageD = YYY : ḊDD.

4 ANISOTROPIC DAMAGE MODEL FOR CON-
CRETE

An anisotropic damage model has been proposed for
concrete in previous non standard thermodynamics
framework (Desmorat, 2004; Desmorat et al., 2007)
introducing a single damage variable, a second order
tensor, as the representation of the damage state due
to microcracking. Mainly due to induced anisotropy,
the dissymmetric response of concrete in tension and
in compression is obtained with a low number of ma-
terial parameters: 2 for elasticity, 1 as damage thresh-
old, 2 for damage evolution. Mazars strain damage
criterion (Mazars, 1984) is used in this initial model,
with the advantage of simplicity for instance at the
numerical level.

4.1 Induced anisotropic damage model
For concrete, the microcracks due to tension are
mainly orthogonal to the loading direction, when the
microcracks due to compression are mainly parallel to
the loading direction. The damage state has then to be
represented by a tensorial variableDDD either a fourth
rank tensor or a second rank tensor. The use of a sec-
ond order damage tensor is more convenient for prac-
tical applications (as well as for the material param-
eters identification) and this is the choice made here.
The damage anisotropy induced by either tension or
compression is simply modeled by the consideration
of damage evolution laws ensuring a damage rate pro-
portional to the positive part of the strain tensor, i.e. a
damage governed by the principal extensions (Mazars
et al., 1990).

The full set of constitutive equations reads

• Elasticity,

ǫǫǫ =
1 + ν

E
σ̃σσ− ν

E
tr σ̃σσ 111 or ǫǫǫ =EEE−1 : σ̃σσ (16)

• Effective stress,

σ̃σσ =
[

(111−DDD)−1/2 σσσD (111−DDD)−1/2
]D

+
1

3

[ 〈tr σσσ〉+
1− tr DDD

+ 〈tr σσσ〉−
]

111

(17)

• Damage criterionf = ǫ̂ − κ(tr DDD), so that the
conditionf < 0 −→ elastic loading or unload-
ing, f = 0, ḟ = 0 −→ damage growth, where
ǫ̂=

√

〈ǫǫǫ〉+ : 〈ǫǫǫ〉+ is Mazars equivalent strain and
where

κ−1(ǫ̂) = aA

[

arctan

(

ǫ̂

a

)

− arctan
(κ0

a

)

]

(18)
introducingκ0 as damage threshold,A anda as
damage parameters.

• Induced damage anisotropy governed by the pos-
itive extensions,

ḊDD = λ̇〈ǫǫǫ〉2+ (19)

The damage multiplieṙλ is determined from the
consistency conditionf = 0, ḟ = 0.

The use of a damage criterion functionf written
in terms of strains instead of stresses allows for a
simple implementation in a Finite Element computer
code (Desmorat et al., 2007). Even if Euler backward



scheme is used, there is no need of an iterative pro-
cess. Note that at the final stage of numerical imple-
mentation the elasticity law needs to be inverted. This
can be done in a closed form as:

σσσ =(111−DDD)1/2 σ̃σσ (111−DDD)1/2 − (111−DDD) : σ̃σσ

3− tr DDD
(111−DDD)

+
1

3
[(1− tr DDD)〈tr σ̃σσ〉+ + 〈tr σ̃σσ〉−]111

(20)

4.2 Extension to nonlocal
Classical mesh dependency occurs when using previ-
ous local damage model in a Finite Element code. A
nonlocal regularization can be used to gain the mesh
independency. One just has to replace local Mazars
strainǫ̂ in the damage criterionf by nonlocal Mazars
strainǫ̂nl and to consider as nonlocal criterion,

f = ǫ̂nl − κ (21)

where nonlocal equivalent strain can be defined using
an integral form withW a nonlocal weight function
(Pijaudier-Cabot and Bazant, 1987),

ǫ̂nl =ǫ̂nl(x) =
1

Vr

∫

Ω

W(x − s) ǫ̂(s) ds

Vr =Vr(x) =

∫

Ω

W(x − s)ds

(22)

or using a second gradient form (Aifantis, 1987; Peer-
lings et al., 1996),

ǫ̂nl − c∇2ǫ̂nl = ǫ̂ (23)

Both the integral form (throughW) and the gradient
form (throughc) introduce a characteristic lengthlc.
Even if induced anisotropy is considered next, the in-
troduction of a single (isotropic) internal length will
prove sufficient for practical applications.

5 VISCOUS REGULARIZATION FOR IMPACT
A regularization possibility for fast dynamics and im-
pact consists in taking into account the strain rate
effect on the dynamic response of concrete. For in-
stance, introduce a characteristic time which, alto-
gether with the consideration of the laws of dynamics,
will indirectly defines a characteristic length. In the
present case of elasticity coupled with damage this
can simply be done by introducing a viscosity law
ǫv = ǫv(Ḋ) in Mazars criterion. The damage evolu-
tion occurs not anymore atf = 0 but atf = ǫv > 0. A
classical law for isotropic damage is Norton-Perzyna
power law,ǫv = kḊ1/n, with k andn the viscosity pa-
rameters. It leads to an unbounded damage rate often
too high at high strain rates.

It is possible to bound the damage rate, for instance
by the maximum ratėD∞ = 1/τc material dependent
equal to the inverse of the characteristic timeτc (Allix
and Deü, 1997; Ladevèze et al., 1998). To gain this
property, these authors rewrite the criterion surface as
f = g(ǫ̂)−D (with g = κ−1) and define the viscosity
law as

f = Dv > 0 Dv = −1

b
ln

(

Ḋ∞ − Ḋ

Ḋ∞

)

(24)

from which derives the delay-damage law, saturating
at high strain rates,

Ḋ = Ḋ∞ [1− exp (−b(g(ǫ̂)−D))] (25)

The viscosity parameters, material dependent, are
thenḊ∞ andb. This regularization is defined locally
(i.e. at a structure Gauss point) and is well adapted for
dynamics computations. It can be extended to the case
of induced anisotropic damage by setting (Desmorat
and Gatuingt, 2006):

tr ḊDD = Ḋ∞

[

1− exp
(

−b
(

κ−1(ǫ̂)− tr DDD
))]

(26)

The full set of constitutive equations now reads

• Elasticity,

ǫǫǫ =
1 + ν

E
σ̃σσ− ν

E
tr σ̃σσ 111 or ǫǫǫ =EEE−1 : σ̃σσ (27)

• Effective stress,

σ̃σσ =
[

(111−DDD)−1/2 σσσD (111−DDD)−1/2
]D

+
1

3

[ 〈tr σσσ〉+
1− tr DDD

+ 〈tr σσσ〉−
]

111

(28)

• Damage criterion (local)f = κ−1(ǫ̂)− tr DDD, us-
ing the viscous regularization (24),

f ≤ 0 −→ elastic loading or unloading

f > 0 with f = −1

b
ln

(

Ḋ∞ − tr ḊDD

Ḋ∞

)

−→ damage growth

(29)

with Ḋ∞ andb the delay-damage parameters.

• Induced damage anisotropy governed by the pos-
itive extensions,

ḊDD = λ̇〈ǫǫǫ〉2+ (30)

The damage multiplieṙλ is determined from the
damage criterion expression forf > 0 (Eq. 29).



The delay-damage law (25) is recovered from previ-
ous equations.

Again, the numerical implementation in a Finite El-
ements computer code is quite simple as – once again
– it does not need an iterative process (Desmorat and
Gatuingt, 2006).

6 STRUCTURAL EXAMPLES
The local and nonlocal integral anisotropic damage
model has been implemented in CEA CAST3M Finite
Element code. The anisotropic delay-damage model
has been implemented in the explicit code LS-Dyna.
The numerical scheme for the time integration is
for both cases Euler’s backward scheme but solved
explicitly (Desmorat and Gatuingt, 2006; Desmorat
et al., 2007). Finite Element examples on 3D struc-
tures are given next to illustrate the model capabili-
ties.

6.1 Plain concrete mixed-mode fracture
The double edge notched specimen tested by Nooru-
Mohamed (Nooru-Mohamed, 1992) is analysed using
the implementation of the model developed in the pre-
vious section. The specimen is a symmetric 200 mm×
200 mm mortar square with two horizontal notches,
30 mm long and 5 mm thick.

The rotation of the external boundary of the plate is
restricted around the vertical axis. The concrete spec-
imen is first loaded by an increasing shear (lateral)
forceF (t) applied on the lateral surface. During the
application of the shear force, the vertical displace-
ment of the upper surface is totally free. In a sec-
ond time, a vertical displacementU(t) is applied up
to failure at constantF = FMax, the higherFMax the
more curved the crack path.

The case study is here carried out for a lateral load
FMax = 10 kN. The FE discretization of the speci-
men is made by the use of four node tetrahedron el-
ements with one integration point. In order to per-
form the computations in 3D at reasonable cost, a
FE mesh with a 5 mm width is used when the real
width of the specimen is 50 mm. The model param-
eters used for the simulation are:E = 42000 MPa,
ν = 0.2, κ0 = 5 10−5, A = 5 103, a = 2.93 10−4. The
nonlocal length used in the integral weight function is
lc = 2 mm, small value indeed justified by the fact
that the material is a mortar with very small con-
stituents (Bazant and Pijaudier-Cabot, 1989; Rague-
neau et al., 2003). Three meshes are used: a coarse
mesh with a total of 4936 elements, a medium mesh
with 11294 elements, and a fine mesh with 14766
elements. The characteristic length corresponds then
close to the notch to 2 elements of the coarse mesh,
to 8 elements of the medium mesh, to 14 elements of
the fine mesh.

Figure 1 shows the anisotropic damage patterns

computed for the different meshes (at the figure top is
the cracking pattern experimentally observed (Nooru-
Mohamed, 1992)). The left column corresponds to the
D22 damage field, the right one to theD11 damage
field, both in nonlocal computations. They exhibit the
now classical convergence and mesh independence of
the results obtained with a nonlocal model, here in
case of anisotropic damage. The application of the
shear load up toFMax yields localized damage at
the notch tip. The structural failure is then due to
the application of the vertical displacementU(t) with
mainly mode I cracks represented here in the Con-
tinuum Damage Mechanics framework by largeD22

values. The damage patterns computed corresponds
to the crack patterns observed with the rotation of two
main cracks represented. The cracks are not perfectly
symmetric with respect to the center of the specimen
due to the application of the experimental boundary
conditions.

6.2 Reinforced concrete structure

The objectives of this section are to evaluate the ro-
bustness and the ability of the anisotropic damage
model to deal with a reinforced concrete element sub-
ject to flexion. The structure is a reinforced square
cross section beam, subject to three point bend load-
ing. Figure 2 shows geometric features for concrete
and steel. During loading, multiple loading paths are
encountered in different parts of the beam: tension on
the lower part, compression on the upper part, shear
near the edge and along the reinforcing bars. The cor-
responding different features of the constitutive equa-
tions are activated at the same time and the occurrence
during loading of several competitive cracks usually
makes difficult the global convergence scheme. For
these reasons, this case-study was part of the interna-
tional MECA benchmark, launched by E.D.F. to com-
pare and discriminate different 3D constitutive mod-
els for concrete (Delaplace and Ghavamian, 2003).

For concrete, the material parameters used in the
following computations are those of previous section.
For steel, elasto-plasticity with linear hardening is
considered and the material parameters are imposed
by the benchmark: Young’s modulusE = 200000
MPa, Poisson ratioν = 0.3, yield stress of 480 MPa,
plastic modulus of 20000 MPa. For the computation,
a 3D specimen has been meshed with 2 elements in
the thickness for a total of 600 eight node parallelepi-
pedic elements. Accounting for the different symme-
tries of the problem, only one reinforcing steel bar is
modelled. The mean dimension of the finite element
size is 50 mm.

The monotonic loading is applied up to failure. Two
computations with two different characteristic lengths
are performed in order to appreciate the effect of the
nonlocal length (Gaussian weight function,lc = 150



Figure 1: Damage maps for Nooru-Mohamed test at
U = 3.5 10−3 mm– (a) left column:D22 fields, (b)
right column:D11 fields
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Figure 2: Reinforced concrete beam

mm andlc = 250 mm). The choicelc = 150 mm is
the more physical as it corresponds here to a char-
acteristic length equal to 3 or 4 times the maximum
aggregate size (Bazant and Pijaudier-Cabot, 1989).

As one can see in theD11-damage maps given in
Figure 3, due to the reinforcing steel bar implying a
flexural rupture the effect of the characteristic length
is important on the cracking pattern as it can be seen
from damage maps. The choicelc = 150 mm is the
more appropriate here, as expected. The computation
represents quite well the multiple cracks propagation

for the characteristic lengthlc = 150 mm.
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Figure 3: Mesh andD11 damage field obtained at the
begining of steels yielding (left :lc = 150 mm, right:
lc = 250 mm - left and right correspond to two differ-
ent computations)

6.3 3D dynamics tension test
In order to get tensile results at very high strain rates,
tensile tests by scabbing were developed (Klepaczko
and Brara, 2001; Schuler et al., 2006). Figure 4 shows
the principle of the test. The setup consists of a striker
(launched at the velocity V), an input bar and the
tested specimen. The input bar of (Klepaczko and
Brara, 2001) experiment has a diameter of 40 mm
for a one meter length, while the concrete sample
has the same diameter for a length of 120 mm. After
the impact of the striker, an incident wave propagates
in the input bar. One part of the wave is transmitted
into the specimen and another one is reflected at the
bar/specimen interface. The transmitted compression
wave is reflected at the free end and becomes a tensile
wave. This leads to fracture in the spall plane.

Three Finite Element meshes have been used. A
coarse mesh is made of 24000 underintegrated 8-
nodes brick elements, a medium mesh of 48000 el-
ements and a fine mesh of 96000 elements. At time
t = 0 the mesh boundaries are free and the experi-
mental pressure wave is applied on the right face of
the specimen. The simulation of the test must make it
possible to find the rupture of the sample experimen-
tally observed,i.e. a single main rupture crack at the
distanceX = 65.8 mm of the impacted face.

Figure 5 shows the damage fieldD11 associated
with the axial axe~e1. When the material is subjected
to compression the imposed strain is not sufficient to
damage the material. To the opposite, when the state
of tension becomes sufficiently large after the com-
pressive wave reflection on the free surface, one ob-
tains a damageD11 close to 1 in a cross section. This
cross section, which represents the location in which
cracking will be initiated, is located at a distanceX
ranging between 64 and 69 mm from the impacted
face. This measure is in good agreement with experi-
mental one.

In order to illustrate the mesh independency (due

Figure 4: Principle of the dynamic tension test
StrickerInput barSample

Strain gages V



Figure 5: Damage in the concrete sample
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to the viscous regularization of the delay-damage
model), the results are presented on the coarse,
medium and fine meshes. The damage maps obtained
for the three meshes are shown in Figure 5. One can
notice that the width of the localized damage band is
the same for the three meshes and equal to approxi-
mately5× lc, therefore of the order of magnitude of a
characteristic length introduced from the knowledge
of the wave celeritycL, lc = cL × τc = cL/D∞. Note
that the times steps are different in the three simu-
lations due to the Courant’s condition based on the
mesh size.

6.4 Impact on a reinforced concrete slab

In order to evaluate the ability of the anisotropic
damage model to describe the concrete behavior in
a case rather complex but representative of an in-
dustrial application, a test in which a projectile im-
pacts a concrete slab has been carried out. The pro-
jectile is a cylinder representative of a Cessna engine
(masse=200 kg, velocity=83,3 m/s, cross section=1
m2) with an elastic behavior.

Figure 6 shows the finite element mesh used for
the simulations on a 4 meters width and 0.5 meters
thick slab. The slab is meshed with 24000 3D under-
integrated elements and the reinforcements are repre-

Figure 6: Finite Element mesh
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sented by 2300 truss-bars. The impacted area has a
refined mesh whereas the other part of the slab has a
coarse one.

Figure 7 shows the damagesD11,D22 andD33 into
the slab. One can notice that due to the symmetry con-
dition, the damageD11 andD22 have a similar pat-
tern. The damageD33 represents the cracks in the slab
thickness and is representative of the scabbing phe-

Figure 7: Damage map
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nomenon. In our simulation, damagesD11 andD22

are quite large exhibiting a shear rupture of the con-
crete slab with the apparition of a punch cone as ex-
perimentally observed in cases of thin slabs. In the
same time, the damageD33 remains small and does
not exhibit scabbing.

7 CONCLUSION
A non standard thermodynamics framework for in-
duced anisotropic damage guaranties the positivity
of the intrinsic dissipation. A proof is given and the
scalar featureḊ ≥ 0 of a positive damage rate for
isotropic modeling is extended to anisotropy as the
simple featureḊDD ≥ 0 of a positive damage rate ten-
sor. The convexity of the state potential with respect
to the damage variable is not necessary.

An anisotropic damage model is described in the
previous non standard framework, with a quite low
numbers of material parameters (5 including the elas-
ticity parameters for the initial plus an internal length
for the nonlocal model or plus 2 viscosity param-
teers for the delay-damage model). The good math-
ematical properties of the model (differentiability of
the state potential, positivity of the dissipation due
to anisotropic damage even for complex non pro-
portional loading) prove to be efficient for numeri-
cal computations of 3D structures, in both quasi-static
and dynamic cases.
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