
1 INTRODUCTION  

Since the publication of Kani in 1967, it is known 
that the resistant capacity of beams is highly de-
pendent on size effects. In 1966 Corley (1966) advo-
cated that size effect did not significantly affect the 
plastic rotation capacity “θpl” in R/C beams. 

However, in 1988 Hillerborg (1988) concluded, 
using fracture mechanics concepts, that “θpl” in R/C 
sections is inversely proportional to the height of the 
structural element. 

Over the last decades research on ductility of 
beams has evolved and demonstrated the influence 
of the reinforcement ratio, concrete grade, stirrup 
spacing and finally size effects. 

The importance of the size effect in beams of re-
inforced-concrete is in fact that this can cause reduc-
tions in the capacities of inelastic deformation and 
plastic rotation as well as transition of types of brit-
tle/ductile ruptures. 

These effects can appear in two forms: 
Modifications in the “a/d” relations (“a” is the 

shear span; “d” is the effective beam depth) that over 
all affect the load capacity of the beams to the shear 
Walraven & Lehwalter (1994); 

Variations in the slenderness inside or out of pure 
bending regions; 

The first research on ductility of beams had in-
volved to portray the influence of the reinforced ra-
tio Leslie, Rajagopalan & Everard (1976), strength 
of the concrete Tognon et al. (1980), Ashour (2000), 
span between stirrups Shin et al. (1989) and finally

size effect Alca et al. (1997). 
This work is concentrated on the evaluation of the 

ductility in 2D beams using smeared crack models in 
the concrete. The numerical 2D analysis is based on 
the finite element method implemented in CASTEM 
2000 developed by the Département de Mécanique 
et de Technologie (DMT) du Commissariat Français 
à l´Energie Atomique (CEA). This program uses the 
constitutive elastoplastic perfect model for the steel, 
the Drucker-Prager two parameter model for the 
concrete and the Newton-Raphson for the solution of 
non-linear systems. 

In the QUEBRA2D/FEMOOP system appropriate 
constitutive models for concrete, rebars and bond-
slip interfaces have been implemented to represent 
more realistically the behavior of the structural sys-
tem. Interface and reinforcement (discrete and em-
bedded approaches) finite elements have been used 
to accomplish an explicit representation of the con-
crete-reinforcement bond. 

In the numerical 2D simulations, the established 
computational program in the Finite Element 
Method DIANA was developed by the TNO Build-
ing and Constructions Research of the Department 
of Computational Mechanics (Netherlands). First, 
the influence of each smeared crack model on the 
numerical results was presented. Later, a parametric 
study is carried out. An analytical model is presented 
in order to calculate the plastic rotation capacity 
"θpl" of the analyzed beams. Later the experimental 
results are compared with the results from the nu-
merical simulations. 
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2 NUMERICAL EVALUATION OF PLASTIC 
ROTATION CAPACITY 

2.1 Concrete Constitutive Model in CASTEM 2000 
The concrete constitutive model used was the 
Drucker-Prager two parameters model (derived from 
the Ottosen four parameters model). This model was 
formulated in 1952 and can be seen as a simple 
modification of the criterion of Von Mises, includ-
ing the influence of the hydrostatic pressure, accord-
ing to Equation (1). 
 

( ) 0kJIf dp21 =−+= ασ      (1) 
 

where “α” and “kdp” are the material constants, 
“I1” and “J2” the invariants that depend on the nor-
mal stress on a body. Figure 1 brings the graphical 
representation of the surface of plasticity in the plan 
σ1-σ2 where “ft” is the tensile strength, “fc” is the 
compressive strength and “fbc” is the biaxial 
strength in compression. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Drucker-Prager yield criteria. 
 

2.2 Concrete Constitutive Models in DIANA 

2.2.1 Hardening Effect 
For the concrete under compression the model de-
scribed in the code (CEB-Fip, 1993) was used in 
some modeling represented in the Equation 2. 

 
 
                   (2) ( 

 
 

 
In other modeling the non-linear hardening model 

of Thorenfeldt was used. This model presented in 
Figure 2 uses an equation between compressive 
stress and the deformations based in the adoption of 
diverse parameters. 

 
 
 
 
 
 
 
 
 
 
Figure 2. Thorenfeldt hardening curve. 
 

2.2.2 Softening Effect 
For the corresponding curve to the behavior of the 
concrete under traction the described bilinear model 
for the code (CEB-Fip, 1993) was used in some 
analyses in agreement with to Equation 3. 
 

 
                              (3) 

 
 

In other simulations the non-linear curve of 
Hordijk was used. This model presented in Figure 3 
uses an exponential relation between the normal ten-
sile stress and the deformations, with “c1” and “c2” 
assuming the values respectively of 3,0 and 6,93. 
 
 
 

 

 
 
 
 
 
 
Figure 3. Hordijk softening curve. 
 

Three smeared crack models were available in 
this program: fixed, multi-directional and rotating. 
 

2.3 Concrete Constitutive Model in FEMOOP 
A four parameter model of Ottosen (1977) was used 
to represent an uncracked material structure. The 
rupture surface is given by: 

 
 

 
                      (4) 
 

A linear softening curve law was utilized to rep-
resent the cracked region with a rotating smeared-
crack model. 
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The contact and truss finite elements were im-
plemented (discrete and embedded approach in 
agreement with Elwi & Hrudey (1989) formulations) 
for the numerical representation of rebars and inter-
faces. 
 

2.4 Steel Reinforcements 
In all programs the reinforcements were modeled 
with the Von Mises plasticity model. 
 

2.5 Steel Bonding Model in FEMOOP 
The Homayoun & Mitchell (1996) multilinear bond-
slip model described in Figure 4 was implemented 
for the representation of interfaces (concrete/steel) 
behavior. The following parameters are given: τsf is 
the interface bond strength, τsr is the interface resid-
ual bond strength, sf is the interface slip at the peak 
stress, sr is the residual interface slip, Eb is the pre-
peak bond modulus and Ed is the post-peak bond 
modulus. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Homayoun bond-slip curve. 
 
3 THEORETICAL ANALYSIS OF PLASTIC 

ROTATING CAPACITY 

Using the MC-90 the plastic rotation capacity can be 
defined as: 
 

 
 
                   (5) 
 
 

 
where εsm(a) is the reinforced strain in the mem-

ber plastification place, εsmy is the reinforced defor-
mation for crack tension equal to fyk. 

Using the definition and applying the model 
σs(εsm) by Kreller (1989): 

 
                 (6) 

 
 

where σsr1 is the reinforced stress in the crack, εs2 
and εsy respectively are the yield deformations in 
steel reinforcements and cracks. 

The Figure 5 represents the process of the plastic 
rotating capacity using an equivalent beam. 
 

 
 

Figure 5. Equivalent beam. 
 

By using the Figure 5 can be calculated the con-
crete and steel forces: 
 

                        (7) 
 

 
 

where υ  is the inclination angle of the compres-
sion field. 

The tensile forces can be derived from the follow-
ing form: 
 

                                                                        (8) 
 

And from this form is found the length of the 
plasticized zone: 
 

 
 (9) 

 

Solving the integral of Equation (6) the plastic ro-
tation capacity can be calculated: 
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sBsy RR ≥  
(10) 

sBsy RR ≤  
 

Making the width of the support plate (bo=0) and 
leaving the effect of the shear forces (cot υ=0) ar-
rived the following expressions are found: 
 

 
(11) 

 
 

 
 

 
4 ANALYSIS OF THE SMEARED CRACK 

APPROACH 

Three reinforced-concrete beams were analyzed in 
the computational program DIANA, analyzed in the 
experimental program of Barbosa (1998) every 
3,60m of span, width of 15cm and height of 28,3cm, 
with stirrups of 6mm a diameter spaced in 8cm and 
with applied loads in 1/3 and 2/3 of span. The longi-
tudinal bottom reinforcements consist of two bars of 
16mm a diameter and the longitudinal top rein-
forcements consist of two bars of 8mm a diameter. 
The mechanical properties of these beams is shown 
in Table 1. 
 
Table 1. Material properties. 

Beam fc(MPa) fy(MPa) Ec(GPa) Es(GPa) 
01 40 620 38,2 210 
02 75 830 42 210 
03 100 830 51,2 210 

 
In the modeling the three models of smeared 

cracks (fixed, rotating and multi-directional) without 
softening (brittle model) and hardening model in 
agreement to proposal of Thorenfeldt for two dis-
tinct values of the shear retention factor (β). In the 
fixed model (Figure 6) the use of a smaller  shear re-
tention factor implied in a more extended cracking; 
the variations in β had not modified the maximum 
values of the crack deformations (εnncr). In the multi-
directional model (Figure 7) the use of a smaller 
shear retention factor implied in a more extended 
cracking mainly in the region of pure bending (for 
β=0,2 notices eight wider cracks in this region were 
noticed; for β=0,9 six wider cracks in the same re-
gion were noticed); the variations in “β” had modi-
fied the maximum values of the crack deformations 
(“β” is inversely proportional to “εnncr” in this 
model). 

 

β=0,2 

β=0,9 
Figure 6. Crack pattern for fixed-crack approach. 
 
 

β=0,2 

β=0,9 
Figure 7. Crack pattern for multi-directional approach. 

In the rotating model (Figure 8) the use of a 
smaller shear retention factor implied in a more ex-
tended cracking mainly is of the region of pure 
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bending; variations in “β” had very affected the val-
ues of the deformations in the cracks. The fixed, 
multi-directional and rotating models predicted re-
spectively six, eight and four wider cracks (for 
β=0,2) in the region of pure bending. The experi-
mental crack pattern (Figure 9) shows four wider 
cracks similar to the ones found with the rotating 
smeared crack model. 
 

β=0,2 

β=0,9 
Figure 8. Crack pattern for rotating model. 
 

Figure 9. Experimental crack pattern. 

5 ANALYSIS OF THE PLASTIC ROTATION 
CAPACITY 

The plastic rotation capacity for the force-
displacement curves was evaluated for experimental 
and numerical modeling in DIANA, CASTEM and 
QUEBRA2D/FEMOOP programs for the three pre-
vious beams. 

Each "θpl" was calculated using the Equation 
(11). The calculated values were disposed in Table 
2. In general, the results from the DIANA were a lit-
tle more rigid than the experimental results and the 
results in platform CASTEM were a little less rigid 

than the experimental ones, whose influence can be 
observed in the values of found for the plastic rota-
tion capacity: bigger values for the numerical simu-
lation in the DIANA and smaller values for 
CASTEM. The results found with FEMOOP were 
located between the DIANA and the CASTEM re-
sults (closer to the experimental results). 
 
 
Table 2. Plastic rotation capacity values. 

 Beam ay(cm) θpl(mrad) 
01 2,63 21,69 
02 13,17 25,86 Experiment 
03 31,31 33,93 
01 1,87 21,02 
02 7,48 28,32 CASTEM 
03 16,62 38,90 
01 4,32 22,93 
02 1,32 21,29 DIANA 
03 6,14 28,30 
01 3,36 22,66 
02 9,66 24,29 FEMOOP 
03 27,77 29,77 

 
 

Table 3 illustrates the displacements at the steel 
yield stress (δy), displacements in the rupture (δu) 
and global ductility ratio (μ=δu/δy) from the ex-
perimental and numerical analysis. 
 
 
Table 3. Ductility ratio values. 

 Beam δu(mm) δy(mm) μd = δu/δy 
01 29,52 12,31 2,40 
02 73,53 21,87 3,36 Experiment
03 71,94 13,55 5,30 
01 29,18 15,16 1,92 
02 70,15 22,89 3,06 CASTEM 
03 69,23 22,30 3,10 
01 20,5 13,30 1,54 
02 38 23,60 1,61 DIANA 
03 45,7 21,9 2,09 
01 26,8 14,6 1,83 
02 44,2 22,6 1,96 FEMOOP 
03 49,3 18,3 2,69 

 
 

The results point to a magnifying of the inelastic 
deformation capacity of beam 2 with regard to beam 
1 when it extended concomitantly with the compres-
sive strength and reinforced yield tension. 

Another magnifying of this ductility can be ob-
served in beam 3 compared to beam 2 where the 
compressive strength of the concrete only extended 
itself. 



6 CONCLUSIONS 

For the fixed rotation crack model the use of a 
smaller shear retention factor implicates wider 
cracks; the variations in β don’t modify the maxi-
mum values of the crack deformations (εnncr). For the 
multi-directional crack model the use of a smaller 
shear retention factor implicates also wider cracking 
mainly in the region of pure bending (for β=0,2 
eight wider cracks were noticed in this region; for 
β=0,9 six wider cracks in the same region were no-
ticed); the variations in “β” modify the maximum 
values of the crack deformations (“β” is inversely 
proportional to “εnncr” in this model). 

For the rotating crack model the use of a smaller 
shear retention factor implicates more extended 
cracking in the region of pure bending; variations in 
“β”affect the deformation values in the cracks. 

The fixed, multi-directional and rotating models 
predict respectively six, eight and four wider cracks 
(for β=0,2) in the region of pure bending. 

The experimental crack pattern (Figure 9) shows 
four main cracks in agreement with the rotating 
smeared crack model. 

The results can be observed in the values of the 
plastic rotation capacity parameters: larger values 
for the numerical simulation in the DIANA and 
smaller values for the CASTEM. The results ob-
tained with the FEMOOP were found to be between 
the ones obtained with the DIANA and the 
CASTEM (closer to the experimental results). 

The results point to a magnification of the inelas-
tic deformation capacity of beam 2 with regard to 
beam 1 when the compressive strength and steel 
yield stress are increased. 

Another magnification of ductility can be ob-
served in beam 3 compared to beam 2 where the 
compressive strength of the concrete only is in-
creased. 
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