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ABSTRACT: The present paper analyzes the influence of volumetric-deviatoric coupling on the prediction of
curved crack patterns in concrete fracture tests. The influence is analyzed by an elasto-plastic-damage model and
the coupling is controlled by the hardening modulus of the plasticity model. First, the tangent stiffness matrix
and the total stress-strain response for simple shear are investigated. Then, two fracture tests reported in the
literature are simulated with significantly varying amounts of coupling. It is shown that volumetric-deviatoric
coupling greatly improves the description of curved crack patterns in mixed-mode fracture tests.

1 INTRODUCTION

Constitutive models based on damage mechanics,
plasticity and combinations of both are often used to
describe the fracture process of quasi-brittle materi-
als, such as concrete, rock, tough ceramics or ice. In
these materials, fracture is characterized by the de-
velopment of nonlinear fracture process zones, which
can be described macroscopically as regions of highly
localized strains. The performance of constitutive
models for concrete is often evaluated by analyzing
fracture tests with curved crack patterns Arrea and In-
graffea (1982), Nooru-Mohamed (1992), Schlangen
(1993), Galvez et al. (1998). The results of such anal-
ysis have been reported by Cendón et al. (2000),
di Prisco et al. (2000), Geers et al. (2000), Grassl and
Jirásek (2004), Ožbolt and Reinhardt (2002), Patzák
and Jirásek (2003), Pivonka et al. (2004). Anisotropic
damage models have proved to be capable of repro-
ducing many of the often complex crack patterns, as
reported by Patzák and Jirásek (2003). Isotropic dam-
age models, on the contrary, often fail to describe
realistically the crack patterns of these mixed-mode
fracture tests. Anisotropic damage models differ from
isotropic ones in, among other things, that they pro-
vide volumetric-deviatoric coupling, i.e. in a simple
shear test, the shear strain generates not only a shear
stress, but also compressive normal stresses. Simple
shear is defined as a state with three-dimensional con-
stant volume strain. Willam et al. (2001) have studied
the volumetric-deviatoric coupling on the constitutive
level for various plasticity models with regard to loss
of stability and uniqueness.

The present paper investigates the influence of
volumetric-deviatoric coupling on the modeling of

mixed mode fracture tests. This is accomplished by
using an isotropic elasto-plastic-damage model for
which the hardening law of the plasticity model is
controlled. Controlling the hardening law makes it
possible to vary the amount of volumetric-deviatoric
interaction. It is expected that this interaction is the
key to an accurate description of curved crack pat-
terns observed in several fracture tests of plain con-
crete. This has not been shown before to the knowl-
edge of the authors. Thus, this study contains novel
features, which help to understand the performance of
modeling techniques for concrete subjected to com-
plex combinations of loading.

The assumption of plane stress is often used for
analyzing the mentioned fracture tests. Consequently,
a modified simple shear state is examined, where
the condition of constant volume strain is limited to
the in-plane strain components, and the out-of-plane
component is determined from the condition of zero
stress in this direction.

The basic equations of the elasto-plastic-damage
model are stated and the volumetric-deviatoric in-
teraction is illustrated with the elasto-plastic-damage
tangent stiffness matrix for the onset of inelastic be-
havior in simple shear. Next, the total stress-strain
response for this state is analyzed with the model
for four different degrees of interaction. Finally, two
fracture tests with curved crack patterns, reported in
the literature, are analyzed with significantly varying
amounts of volumetric-deviatoric coupling.



2 THE PLASTICITY-DAMAGE MODEL

The model consists of an elasto-plasticity part com-
bined with isotropic damage that is determined by the
cumulative plastic strain. For the combined elasto-
plastic-damage model, the stress-strain relation is
given as

σ = (1− ω) σ̄ = (1− ω)De : (ε− εp) (1)

where σ is the nominal stress, ω is the scalar describ-
ing the amount of isotropic damage, σ̄ is the effective
stress, De is the isotropic elastic stiffness, ε is the total
strain and εp is the plastic strain.

2.1 Basic equations

The plasticity model, which is formulated on the as-
sumption of small strains, is based on the effective
stress, σ̄, and consists of the yield function, the flow
rule, the evolution law for the hardening variable and
the loading-unloading conditions. For plane stress

fp (σ̄, κp) = σ̄1 − σy (κp) = σ̄1 − (ft + Hpκp) (2)

describes the Rankine yield function, where σ̄1 is the
maximum principal value of the effective stress ten-
sor σ̄, σy is the yield stress, ft is the tensile strength,
Hp is the plastic hardening modulus and κp is the
plastic hardening parameter. Plastic yielding is ini-
tiated when the maximum principal effective stress
reaches the yield stress σy. For equibiaxial tension,
when both principal values are equal to the yield
stress, the value of the second principal stress also in-
fluences the yielding process. Only one active surface
is dealt with here, since the behavior is studied in bi-
axial tension and compression, see Figure 1a. For the
structural analysis in Section 4, however, the case of
two active yield surfaces for equibiaxial tension is in-
cluded. For one active surface, the flow rule is given
as

ε̇p = λ̇
∂fp

∂σ̄
= λ̇

∂σ̄1

∂σ̄
= λ̇n1 ⊗ n1 (3)

where n1 is the normalized eigenvector corresponding
to the first principal eigenvalue of the effective stress
tensor, ⊗ denotes the dyadic product of two vectors,
and λ̇ is the rate of the plastic multiplier. The evolu-
tion of the hardening parameter, κp, is given by the
norm of the plastic strain rate

κ̇p = ‖ε̇p‖ = λ̇ (4)

Loading-unloading conditions complete the descrip-
tion of the plasticity part:

fp ≤ 0 λ̇ ≥ 0 λ̇fp = 0 (5)

The damage variable, ω, is related to the plastic hard-
ening parameter, κp, by

ω = gd (κp) = 1− ft exp (−κp/εf)

ft + κpHp
(6)

which results in an exponential total stress-strain
curve, see Figure 1b. The model parameter, εf, con-
trols the area under the stress strain curve and can be
related to the fracture energy GF. There is no plastic
process without damage evolution, since it is directly
linked to the plastic process.
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Figure 1: (a) Schematic drawing of the Rankine yield
surface at the onset of yielding for pure shear. (b)
Schematic drawing of the stress-strain and effective
stress-strain curve for uniaxial tension.

2.2 The tangent stiffness matrix

The tangent stiffness is studied to gain information on
the form of the volumetric-deviatoric coupling, which
is introduced by the plastic-damage model. The rate
form of the general stress-strain relation in Eq. (1) is

σ̇ = (1− ω) ˙̄σ− ω̇σ̄ =

(1− ω)De :

(
ε̇− λ̇

∂σ̄1

∂σ̄

)
− g′dλ̇De : (ε− εp)

(7)

where

g′d =
∂gd

∂κp
=

ft/εf exp (−κp/εf) (ft + κpHp)

(ft + κpHp)
2

+
ft exp (−κp/εf)Hp

(ft + κpHp)
2

(8)

The plastic multiplier, λ̇, is determined from the
consistency condition of the plasticity part

ḟp =
∂σ̄1

∂σ̄
De :

(
ε̇− λ̇

∂σ̄1

∂σ̄

)
− λ̇Hp = 0 (9)

as

λ̇ =

∂σ̄1

∂σ̄
: De : ε̇

∂σ̄1

∂σ̄
: De :

∂σ̄1

∂σ̄
+ Hp

(10)

By setting Eq. (10) in Eq. (7)

σ̇ = Depd : ε̇ (11)



is obtained, where

Depd = (1− ω)


De −

De :
∂σ̄1

∂σ̄
⊗ ∂σ̄1

∂σ̄
: De

∂σ̄1

∂σ̄
: De :

∂σ̄1

∂σ̄
+ Hp




− g′d




De : (ε− εp)⊗ ∂σ̄1

∂σ̄
: De

∂σ̄1

∂σ̄
: De :

∂σ̄1

∂σ̄
+ Hp


 (12)

is the tangent stiffness of the elasto-plastic-damage
model for one active surface.

Now, the tangent stiffness for simple shear is ana-
lyzed. Before the onset of inelastic behavior the stress
state in simple shear is determined by the isotropic
elastic stiffness matrix as

{
0
0

σ12

}
=

E

1− ν2




1 ν 0
ν 1 0

0 0
1− ν

2




{
0
0

γ12

}
(13)

where E is Young’s modulus and ν is Poisson’s ratio.
The shear strain rate results in a shear stress rate only,
since the components (1,3) and (2,3) of the isotropic
linear elastic stiffness matrix in Eq. (13) are equal to
zero. Thus, for isotropic elasticity, simple shear co-
incides with pure shear since the normal strain and
stress components are zero. The direction of the max-
imum principal stress component with respect to the
Cartesian coordinate system, for this stress state, is
determined as

n1 =
{
1/
√

2 1/
√

2
}T

(14)

Now, Eq. (3) is used to determine the derivative of the
maximum principal stress, with respect to the effec-
tive stress tensor, which results in engineering nota-
tion to

∂σ̄1

∂σ
= {1/2 1/2 1}T (15)

Finally, we set Eq. (15) and Eq. (8) into (12) and
obtain, for the onset of the inelastic behavior (κp =
ω = 0, εp = 0 and σ12 = ft)

Depd = De −Rp −Rd (16)

where De is the elastic stiffness matrix in Eq. (13), Rp
is the contribution of the plasticity part with

Rp =
1

hp

E2

4 (1− ν2)2




(1 + ν)2 (1 + ν)2 1− ν2

(1 + ν)2 (1 + ν)2 1− ν2

1− ν2 1− ν2 (1− ν)2




(17)

and Rd is the contribution of the damage part with

Rd =
g′d
hp

E

2 (1− ν2)

[
0 0 0
0 0 0

ft(1 + ν) ft(1 + ν) ft (1− ν)

] (18)

Furthermore,

hp =
E (5 + 3ν)

8 (1− ν2)
+ Hp (19)

and
g′d =

1

εf
+

Hp

ft
(20)

The matrix, Rp, provides volumetric-deviatoric
coupling, since the components (1,3) and (2,3) of Rp
are not zero for finite values of Hp. A shear strain rate,
γ̇12, results, therefore, not only in a shear stress rate
σ̇12, but also in two normal stress rates, σ̇11 = σ̇22.
The components (1,3) and (2,3) of Rd, on the other
hand , are zero, so that the damage part does not pro-
vide any volumetric-deviatoric coupling. The value
of hp in Eq. (19) depends on the hardening mod-
ulus, Hp. Consequently, the amount of volumetric-
deviatoric coupling given by Rp is controlled by Hp.
For the limit Hp =∞, the components of Rp are zero
and the volumetric-deviatoric coupling vanishes. The
components of matrix Rd, however, do not tend to
zero for Hp →∞, since g′d in Eq. (20) depends also
on Hp, so that

lim
Hp→∞

(
g′d
hp

)
=

1

ft
(21)

Thus, the elasto-plastic-damage stiffness is reduced to
a pure elasto-damage stiffness for Hp →∞.

3 ELASTO-PLASTIC DAMAGE SIMULATION
OF A SIMPLE SHEAR TEST IN PLANE
STRESS

The total stress-strain response of the damage-
plasticity model was analyzed, in particular the influ-
ence of volumetric-deviatoric interaction on the sim-
ple shear response. Four values of the plastic harden-
ing modulus, Hp, ranging from 0 to 100E are used.
The other model parameters chosen are E = 30 GPa,
ν = 0.18, ft = 3.5 MPa and εf = 0.0004.

The influence of Hp is illustrated by the unloading
behavior in uniaxial tension in Figure 2. For Hp = 0,
the inelastic strain is mainly irreversible (εp − ωεp),
while only a small amount of inelastic strain is re-
versible (ωε).

The situation is different for Hp = 100E, where the
plastic strain is nearly zero and the inelastic strains
are almost fully reversible. Thus, the model unloads
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Figure 2: The influence of the plastic hardening mod-
ulus Hp on the unloading stiffness for the elasto-
plastic-damage Rankine model. The tensile stress is
normalized by the tensile strength ft.

almost back to the origin of the stress-strain curve in
the figure.

Also, the amount of volumetric-deviatoric cou-
pling differs. This is illustrated by a simple shear
test in plane stress. In this strain controlled test,
the shear strain is increased, while the two normal
strain components are kept at zero. The shear stress-
strain response is strongly influenced by the value
of the plastic hardening modulus, Hp, which con-
trols the amount of volumetric-deviatoric interaction,
see Figure 3. The maximum shear stress for Hp = 0
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Figure 3: The influence of the plastic hardening
modulus, Hp, on the response in simple shear for
the elasto-plastic-damage Rankine model. The shear
stress is normalized by the tensile strength ft

(strong interaction) is nearly 1.4 times greater than
for Hp = 100E (weak interaction). This difference
is explained by the activation of normal compressive
stresses when there is volumetric-deviatoric interac-
tion, see Figure 4. When the plasticity model has a
strong influence, normal plastic strain components de-
velop; since the total strain in the normal direction is
fixed, these lead to normal compressive stresses. For
Hp = 100E (weak influence) almost no normal com-
pressive stresses are activated.
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Figure 4: The amount of activated negative normal
stress due to the volumetric-deviatoric interaction,
which is controlled by the plastic hardening modu-
lus, Hp. The normal stress is normalized by the tensile
strength, ft.

It should be stressed that the volumetric-deviatoric
coupling not only depends on the hardening modu-
lus, which in the present study controlls the ratio of
damage and plasticity, but also on the form of the
yield surface and flow rule of the plasticity model.
However, in the present study only a Rankine plas-
ticity model is considered for simplicity and coupling
is only controlled by the hardening modulus.

4 ANALYSIS OF FRACTURE TESTS

In the present section the results of finite element sim-
ulations of two fracture tests with curved crack pat-
terns are presented. The crack band approach, Bažant
and Oh (1983), is used to obtain a mesh independent
description of the dissipated energy. Two amounts
of volumetric-deviatoric coupling, Hp = 0 and Hp =
100E, are considered. The plastic hardening modu-
lus of Hp = 0 corresponds to strong coupling, while
Hp = 100E corresponds to weak coupling. The speci-
mens are discretized by a fine mesh of bilinear quadri-
lateral elements assuming plane stress.

4.1 Four-point shear test

The first example is a four-point shear test of a single-
edge-notched beam, conducted by Arrea and Ingraf-
fea (1982), shown in Figure 5. The material parame-
ters chosen are E = 30 GPa, ν = 0.18, ft = 3.5 MPa
and GF = 140 J/m2 as used in Patzák and Jirásek
(2003). The results are given as contour plots of
the maximum principal strain (Figure 6), and load
crack mouth sliding displacement (CMSD) curve
(Figure 7).
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Figure 5: The experimental setup of the four-point
shear test.

(a) (b) (c)
Figure 6: Influence of the volumetric-deviatoric in-
teraction on the crack pattern in the four-point shear
test: (a) experiments; (b) strong interaction (Hp = 0);
(c) weak interaction (Hp = 100E).
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Figure 7: Comparison of load CMSD curves for anal-
ysis and experimental bounds in the four-point shear
test.

4.2 Double-edge-notched (DEN) specimen

The second example is the double-edge-notched spec-
imen tested by Nooru-Mohamed (1992). The experi-
mental setup is presented in Figure 8.

The non proportional loading path 4c is chosen.
This is the most challenging test of the entire pro-
gram, because the final crack pattern consists of two
cracks with a relatively strong curvature, see Fig-
ure 9a. During the first stage, the specimen is loaded
by an increasing “shear force”, Ps, until the maxi-
mum force that the specimen can carry is reached.
Then, in the second stage, this force is kept con-
stant and a “normal” force, P , is applied in the ver-
tical direction. The material parameters chosen are
E = 30 GPa, ν = 0.2, ft = 3 MPa and GF = 110 J/m2

as used in di Prisco et al. (2000) and (Patzák and

Figure 8: The geometry and the loading setup of the
DEN specimen.

Jirásek). The contour plots of the maximum princi-
pal strain for strong and weak coupling are compared
with the experimental crack patterns in Figure 9. Fur-
thermore, the load-displacement curves for “shear”
and “normal” loading are compared with the experi-
mental results in Figure 10, where the simulated load-
deflection curve for the normal and shear directions
are shown.

(a) (b) (c)
Figure 9: Influence of the volumetric-deviatoric inter-
action on the crack pattern in the DEN test: (a) ex-
periments, (b) strong interaction (Hp = 0), (c) weak
interaction (Hp = 100E).

4.3 Discussion of the results

For strong volumetric-deviatoric coupling (Hp = 0),
the experimental crack patterns are well represented
by the elasto-plastic-damage model for both the
four-point shear tests and the DEN test, see Fig-
ures 6b and 9b. With weak coupling (Hp = 100E), on
the other hand, the crack patterns cannot be captured.
The zone of localized strains in the four-point shear
test is strongly attracted by the direction of the mesh
lines, see Figure 6c. For the DEN test, the results are
even worse. A horizontal localization zone forms as
soon as the tensile load is applied in the second stage
of the test, see Figure 9c. This does not agree with the
curved crack patterns observed in the experiments.

The strain localizes in regions where the stress
state is close to uniaxial tension, since zones subjected
to shear are confined and resist, therefore, higher
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Figure 10: Comparison of load-displacement of anal-
ysis and experiments of (a) shear force and shear dis-
placement and (b) normal force and normal displace-
ment for the double-edge-notched specimen.

stresses. This is the reason why, for volumetric-
deviatoric coupling, the curved crack patterns can be
represented, but not without coupling.

5 CONCLUSIONS

The study of the influence of volumetric-deviatoric
coupling on modeling curved crack patterns leads to
the following conclusions.

• Constitutive models with volumetric-deviatoric
coupling provide higher shear resistance in sim-
ple shear than models without coupling. The in-
crease in shear stress is caused by the activa-
tion of compressive stresses due to constrained
strains.

• In the simulation of curved cracks, the paths of
localized strain zones are strongly influenced by
the amount of volumetric-deviatoric coupling.
Only with volumetric-deviatoric coupling can
the curved crack patterns be reproduced.

Coupling can be provided by the theory of plastic-
ity or anisotropic damage models.
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Patzák, B. and M. Jirásek (2003). Adaptive resolution of local-
ized damage in quasibrittle materials. Journal of Engineering
Mechanics, ASCE 130, 720–732.
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