
1 INTRODUCTION   

As it is well known, the strength of the material is 
the major parameter controlling the structural capac-
ity. However, it is equally well known that large 
structures exhibit a relatively lower capacity than 
small structures, for the same material and type of 
geometry (i.e. assuming perfect geometrical simili-
tude), as if the material had a smaller strength. As a 
matter of fact, the nominal strength of the material - 
usually measured on small specimens - is never 
reached in large structures at failure, in the case of 
brittle or quasi-brittle materials (like concrete, mor-
tar and rock). This is “size effect”, i.e. the apparent 
size-dependence of the strength of the material on a 
characteristic dimension of the structure under ex-
amination. 

Since size-effect has to do with the limited 
toughness of quasi-brittle materials, concrete struc-
ture are prone to size effect, that is enhanced by 
notches, and appears also whenever the material ex-
hibits a transition from a ductile to a brittle behavior. 
As for the nominal strength, it can be worked out 
from the applied loads and from the geometry, or 
can be evaluated by means of the classical de Saint 
Venant’s solution (Bažant 1999). 

To predict size effect, deterministic and probabil-
istic theories have been introduced in the last thirty 
years by several authors (i.e. Weibull, 1939; Bažant, 
1984; Carpinteri, 1994). These authors explained 
size-effect with the presence of randomly-dispersed 
defects in the materials, with fracture cohesive be-

havior, and with the stress concentration around 
notches. In materials with cohesive behaviour the 
energy stored elastically in the volume is dissipated 
on the fracture surface causing size effect. In the last 
five years Bažant (2004, 2005) developed and dis-
cussed a “combination” of the deterministic-
energetic size-effect with statistical-energetic size-
effect, by introducing (Bažant, 2002) analytical sim-
plifications for practical uses. 

This paper develops a size-effect law starting 
from Neuber’s theory (1958), extended to cementi-
tious materials. This approach considers the pres-
ence of a dominant defect at failure. It can be con-
sidered a static deterministic approach to size-effect 
law in  tension, bending and shear. Comparisons 
with experimental and analytical results of other au-
thors are presented as well.  

2 MODELING  

The generalized size-effect law obtained from the 
application of Neuber’s theory (Marazzini, 1999; 
Schumm, 1997; Rosati, 2001; Rosati and Natali 
Sora, 2001) on stress concentration around a domi-
nant defect, notch or crack, has the formulation indi-
cated by Eq. (1). This theory assumes that a domi-
nant crack grows at failure. This crack is considered 
equivalent to a pointed notch with a small plastic 
area at the apex (radius ρ’). This law is valid for 
bending, tension and shear: 
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In Eq. (1), t is the dominant crack length, h is the 
main dimension of the element and σu is the strength 
of the material. The values of the parameters c1 and 
c2, that depend on notch or fracture geometry and on 
the generalized stress, are shown in Table 1. 
 
Table 1.  Parameters of the size-effect law obtained by apply-
ing Neuber’s theory.  ______________________________________________ 
       Tension   Bending   Shear  ______________________________________________ 
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Double notch c1 = 
2

3
 

or crack   c2 = 
24

3π
 

_____________________________________________ 
 
Similar coefficients for bending and shear with dou-
ble notch or cracks or holes can be obtained.   

Different cases can be figured out. It is possible to 
introduce some analytical developments of the gen-
eralized expression (1), by considering different val-
ues of the dominant crack length t : 

Formulation A) The ratio t/h is kept constant. In 
this case the length of the fracture at failure is pro-
portional to the main dimension of the structure. As-
suming the ratio ξ = t/h = constant, the expression 
(2) is obtained: 
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The  asymptotic behavior of the expression (2) is re-
ported in (2a) and (2b):  
 

• h ⇒ 0 σN ⇒ σU           (2a) 

• h ⇒ ∞ σN ⇒ 0  with  
h

1       (2b) 

and this form of the size-effect law corresponds to 
the case of a very large structure failing under a very 
small load.   
 Formulation B) Assuming for the crack length t 
no dependence on h, and keeping t constant, the ex-
pression (3) is obtained.  
 
 

 This size-effect law is characterized by a residual 
strength (3b) tending to infinite:  
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h ⇒ 0  σN = σU               (3a) 

h ⇒ ∞  
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Formulation C) The dominant defect is a function 
of the main dimension h (for instance t = tmax (1-c 
/(h+c)), where tmax is the maximum crack length and 
c is an experimentally-determined parameter). Sub-
stituting this expression into Eq. (1), the expression 
(4) is obtained, and for h tending to infinite, the re-
sidual strength can be evaluated (4b): 
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h ⇒ 0  σN = σU                (4a) 
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3 ANALYTICAL AND EXPERIMENTAL 
COMPARISONS 

In the last thirty years several expressions of the 
size-effect law were introduced for cementitious ma-
terial structures. The main deterministic approaches 
will be compared with the present formulation. 

3.1 Linear-elastic fracture mechanics 
Considering the solution of a single notch subjected 
to bending (for example four point bending) the ex-
pression (2) provides the nominal strength as a func-
tion of  h: 
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and the following expression is obtained:  
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by putting: 
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The approach of Linear-Elastic Fracture Mechanics 
gives the expression of the nominal strength in terms 
of stress intensity factor (KI mode I) and ratio t/h: 
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From the comparison of the two formulations, tend-
ing h to infinite expression (10) is obtained: 
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Considering a coincidence in the expression (11), 
the functional dependence of the radius of the proc-
ess zone on the critical stress intensity factor and on 
the strength of the material stands out clearly.  
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Figure 1. Stress intensity factors for notched beams (Neuber, 
Tada and Bueckner). 

 

In Fig.1 the stress-intensity factor given by Eq. (11) 
is plotted, together with the small differences be-
tween Neuber’s curve and the curves obtained by 
Bueckner (1960) and by Tada (1973). 

3.2 Bažant’s Size-Effect Law (SEL)  
Twenty years ago, Bažant developed a size-effect 
law (SEL) on the basis of energy-related considera-
tions. The SEL depends only on two empirical pa-
rameters that are determined experimentally. The 
formulation of this law is reported in (12), in com-
parison with Neuber’s law Formulation A) (13):  
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for h ⇒ 0     UN σσ =         (14a) 
for h ⇒ ∞     0=Nσ         (14b) 
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From a physical point of view, means that the domi-
nant crack at failure is proportional to the main di-
mension h of structure. The nominal strength be-
comes zero for h tending to infinite. It is possible to 
obtain SEL parameters as a function of Neuber’s law 
Formulation A) parameters; this equivalence is ex-
pressed in (18): 
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In Figs. 2 and 3 the test results by Ferro (1993, di-
rect tension), and by Sabnis and Mirza (1979, 4-
point bending) are shown, together with the best fit-
ting deriving from Bazant’s SEL and from Neuber’s 
law Formulation A).  
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Figure 2. Best fitting of Bažant and Neuber’s Formulation A) 
(t/h = const.), direct tension test results by Ferro. 
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Figure 3. Best fitting of Bažant and Neuber’s Formulation A) 
(t/h = const.), bending test results by Sabnis and Mirza. 
 
In Figs. 4 and 5 the best fitting obtained by means of 
Bazant’s SEL and by Neuber’s law Formulation A) 
with the parameter h0 from Eq.(18) are plotted, to-
gether with the test results by Ferro and by Sabnis 
and  Mirza. 
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Figure 4. Best fitting by means of Bažant and Neuber’s Formu-
lation A) with parameters of equivalence (18), direct tension 
test results by Ferro. 
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Figure 5. Best fitting by means of Bažant and Neuber’s Formu-
lation A) with parameters of equivalence (18), bending test re-
sults by Sabnis and Mirza. 

3.3 MFSL Carpinteri 

By introducing the fractal nature of fracture, Carpin-
teri (1994) has obtained the so-called multifractal 
scaling law: 
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The parameters of MFSL are determined by testing. 
For h tending to infinite the nominal strength tends 
to a residual asymptotic value (20a). For h = 0, the 
strength tends toward infinite. A good equivalence is 
obtained with Neuber Formulation B), by putting t = 
const. With the following considerations it is possi-
ble to obtain a functional dependence (22 and 25) 
between the two sets of parameters:  
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In Figs. 6 and 7 the best fittings of the two inde-
pendent approaches MFSL and Neuber’s law For-
mulation B) are reported for the test results by Ferro 
and by Sabnis and Mirza. 
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Figure 6. Best fitting of Carpinteri and Neuber’s Formulation 
B) (t=const.), direct tension test results by Ferro. 
 
In Figs. 8 and 9 the test results by Ferro and by Sab-
nis and Mirza, the best fitting by means of Carpinteri 
MFSL and by Neuber’s law Formulation B) with the 
parameters obtained from equivalence (22 and 25) 
are reported.  
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Figure 7. Best fitting of Carpinteri and Neuber’s Formulation 
B) (t=const.), bending test results by Sabnis and Mirza. 

 

0 100 200 300 400
length [mm]

0

2

4

6

8

10

σ 
[M

Pa
]

Carpinteri
Neuber
Mirza

 
Figure 8. Best fitting by means of Carpinteri, Neuber’s Formu-
lation B) with parameters of equivalence (22 and 25), direct 
tension test results by Ferro. 
 

0

2

4

6

8

10

σ 
[M

Pa
]

Carpinteri
Neuber
Mirza

 
Figure 9. Best fitting by means of Carpinteri, Neuber’s Formu-
lation B) with parameters of equivalence (22 and 25), bending 
test results by Sabnis and Mirza. 

 
 
 
 
 



Finally Figs.10a, 11a and 12a shown that SEL, 
MFSL and the Neuber’s law Formulation C) satis-
factorily fit the test results (in direct tension by 
Ferro, Fig.10a; in 4-point bending by Sabnis and 
Mirza, Fig.11a; and in splitting tests by Hasegawa 
(1985), Fig.12a).  

 

0 200 400 600 800 1000
length [mm]

0

2

4

6

8

σ 
[M

Pa
]

Carpinteri
Bazant
Neuber
Ferro

 
Figure 10a. Best fitting by means of Bažant, Carpinteri and 
Neuber’s Formulation C) (t = t(h)). Direct tension test results 
by Ferro. 
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Figure 10b. t = t(h). 
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Figure 11a. Best fitting by means of Bažant, Carpinteri and 
Neuber’s Formulation C) (t = t(h)). Bending test results by 
Sabnis and Mirza. 
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Figure 11b. t = t(h). 
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Figure 12a. Best fitting by means of Bažant, Carpinteri and 
Neuber’s Formulation C) (t = t(h)). Splitting test results by Ha-
segawa. 
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Figure 12b. t = t(h). 
 
The t-h relations utilized in best fitting process are 
shown in Figs.10b,11b,12b. 

3.4 Conclusions 
From a physical point of view, the simplified static 
deterministic theory presented here allows to obtain 
the empirical parameters of the classical size-effect 
laws.  
 

Coefficient of 
determination  
R-squared  
 
Carpinteri: 0.585 
Bažant:      0.670 
Neuber:     0.716 

Coefficient of 
determination  
R-squared  
 
Carpinteri: 0.998 
Bažant:      0.919 
Neuber:     0.999 

Coefficient of 
determination  
R-squared  
 
Carpinteri: 0.837 
Bažant:      0.381 
Neuber:     0.866 



In addition, the proposed approach makes it pos-
sible to comment and clarify the role of the me-
chanical and geometric parameters in the case of 
asymptotic behaviour (for h approaching infinite). 

The comparison between the theoretical predic-
tion and the experimental data for different general-
ized stresses show a good agreement. Furthermore, 
in Rosati and Gelmini (2005) the authors developed 
the closed-form solution for the extension of Neu-
ber’s theory to the notches with loaded contour with 
cohesive stresses (cohesive crack). Comparing these 
new solutions with the solutions presented here, the 
authors obtained a very good agreement. This com-
parison suggests the use of the closed form solutions 
proposed here in superposition with statistical ap-
proach. 
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