
1 INTRODUCTION 

The comprehension of the ultimate behaviour of 
Civil Engineering structures subject to natural or in-
dustrial risks such as shocks, impacts, earthquake, 
explosions, etc can be handled in two ways: experi-
mental testing and numerical modelling. In earth-
quake engineering, the major drawback remains in 
the experimental work. One has to deal with large 
scale structures subject to dynamic and complex 
loading. Classical tests are performed on shaking ta-
bles, allowing reproducing real or artificial earth-
quake, but with reproducibility difficulties and 
physical measurement limitations. To overcome 
these difficulties, the pseudo-dynamic or hybrid test-
ing are under developments (Pegon & Pinto 2000). 
A combination between the numerical modelling 
(into which one can introduce the suitable model of 
material behaviour) and a test on parts of the struc-
tures can be made to better understand the structure 
response while benefiting from the substructuring 
technique. To numerically determine the inertia 
forces for performing static tests instead of dynamic 
ones leads to the so-called pseudo-dynamics (PSD) 
modelling. We describe and present the results for 
such PSD tests with sub-structuring technique car-
ried out in nonlinear range. In fact, taking into ac-
count the nonlinear behaviour of the modelized 
structure is of major importance since the concomi-
tant stiffness or eigen-frequency decrease change the 
whole response of the structure and so, the boundary 
conditions and loadings of the tested structure. 

The tests were conducted for a two level rein-
forced concrete frame which is subjected to a real 
two components earthquake (horizontal and verti-
cal). We present the use of computations for the

modelized and tested sub-structures in the PSD tests. 
Both an implicit and an explicit time integration 
schemes are used for the simulated parts in paral-
lel with an explicit one used for the tested part 
(Souid et al. 2005). Tests results are used to identify 
and validate the nonlinear constitutive equations. 
For instance, a three dimensional damage model 
with induced damage anisotropy is described and 
used for quasi-brittle materials such as concrete. The 
quasi-static condition of the tests allows performing 
refined field measurements using the digital images 
correlation techniques. At the scale of a reinforced 
concrete beam, one can distinguish for different ge-
ometries and steel reinforcement ratio, the rupture 
kinematics and make easier numerical model identi-
fication. 

2 PSEUDO-DYNAMIC TESTING 

2.1 General scheme 
Evaluation of the seismic response of a structural 
system is usually conducted using a shaking table. 
However, shaking-table experiments for large-scale 
structures are difficult, for instance due to table ca-
pacity limitations. An alternative way of testing full 
or large scale structures is the PSD testing (Shing 
and Mahin, 1984, Takanashi and Nakashima, 1987). 
The PSD testing is an experimental technique de-
velopped to evaluate the seismic performance of 
structure samples in a laboratory by means of com-
puter-controlled simulation. It is an hybrid method, 
in which the structural displacements due to the 
earthquake are computed by using a stepwise inte-
gration procedure. Let us consider the dynamic equi-
librium equation under seismic external acceleration  
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where M , C  are the mass and damping matrices, 
( )tu&  and ( )tu&&  are respectively the relative velocity 

and acceleration vectors at time t. Knowing vari-
ables at time nt  one can compute displacement and 
velocity at time tn+1 by using a numerical scheme. 
Only the ( )tr  forces are experimentally measured. 
Numerical time discretization schemes belong to the 
Newmark family. Within the framework of experi-
ment-computation interaction (Shing et al. 1991), an 
efficient and pragmatic choice consists in imple-
menting an Operator Splitting algorithm, allowing 
for a direct integration without iteration in the linear 
range (Nakashima et al. 1993). In nonlinear regime 
up to rupture, it becomes necessary to damp the high 
frequencies, sources of numerical instabilities when 
an explicit procedure is adopted. In that purpose, the 
OS technique can be coupled to the HHT algorithm 
(Hilber et al. 1977, Combescure & Pegon 1997). 
Knowing the accelerogram and so the acceleration 
vector 1+nu&& , the displacements and velocities are 
predicted as following 
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and corrected using: 
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with ( ) 4/1 2αβ −=  et ( ) 2/21 αγ −= . For 0=α , we re-
cover the classical Newmark scheme (1/2, 1/4) and 
for  [ [0;3/1−∈α , the numerical scheme dissipates 
energy. To get an explicit solution, one may ap-
proximate the stiffness forces by: 
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IK  is a stiffness matrix (from the initial virgin one 

to the tangential one). Using the equation of motion 
at time n+1 shifted of α , one may obtain the accel-
eration vector by solving the linear algebraic system:  
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2.2 Sub-structuring 
The PSD testing with substructuring can signifi-
cantly reduce the cost of the tests to get the seismic 
performance of the structures (Chung et al 1999). In 

substructuring technique, a physical model is built 
only on the part or parts where nonlinearity is ex-
pected (the physical substructure), with the remain-
ing parts modeled computationally (the numerical 
substructure). This method initially developed by 
(Takanashi and Nakashima 1987), Mahin and Shing 
1985) has been considerably extended by research-
ers at the JRC, (Buchet and Pegon 1994). The nu-
merical part is simulated by using a finite element 
code in a computer connected through a network 
with other computers that realize the experimental 
procedures of the PSD test. The displacement at the 
interface between the physical and numerical sub-
structures is obtained and applied to the test speci-
men by hydraulic actuators. The resulting resistance 
forces are measured by load cells and fed back to the 
numerical model, together with the next increment 
of earthquake ground motion. A new interface dis-
placement is then calculated and applied to the 
tested specimen, and the loop is repeated until the 
test is completed, (Pegon & Pinto 2000, Chang 
2001, Williams and Blakeborough 2001). 

We denote by the subscripts S and T the matrices 
corresponding respectively to the simulated and the 
tested substructure. The i and j indices correspond to 
the internal nodes of the simulated substructure, the 
I and J indices to the internal nodes of the tested 
substructure and δ  and θ  to the interface nodes be-
tween the two substructures. Based on the equation 
7, the system to solve sums up to: 
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A static condensation applied to interface nodes al-
lows to treat only two systems: the first one for the 
simulated substructure and the second one for the 
tested substructure. 

In order to account for the diffused cracking in 
the whole concrete structure, the nonlinear behav-
iour of materials has to be introduced in the simu-
lated substructure as well. In order to ensure effi-
ciency and robustness, the framework of simplified 
multifibres analysis has been chosen. 

2.3 Numerical implementation and multifibres 
analysis 

For a simple reason of excessive computational 
costs, complete 3D approaches to structural dynam-
ics in civil engineering are not commonly used. 
Nonlinear dynamic analysis of complex civil engi-
neering structures based on a detailed finite element 
model requires large scale computations and handles 
delicate solution techniques. The necessity to per-
form parametric studies due to the stochastic charac-
teristic of the input accelerations imposes simplified 
numerical modeling which will reduce the computa-



tion cost. In classical multifibre analysis (Bazant et 
al. 1987, Spacone et al. 1996) the latter is achieved 
by selecting the classical Euler-Bernoulli beam 
model for representing the global behavior of the 
structural components of a complex civil engineer-
ing structure. With respect to the large spreading of 
the zone with nonlinear behavior it is further seek to 
limit the model complexity (and resulting computa-
tional costs) by limiting the diversity of possible de-
formation global patterns which is achieved in a 
multifibre beam model with fibres restricted to beam 
kinematics and with each one employing its own 
constitutive model (see figure 1). The main advan-
tage of using a multifibre type finite element con-
cerns the possibility to use a simple uniaxial behav-
ior which allows for a very efficient implementation 
of nonlinear constitutive equations. This is no longer 
possible for thick beams where shear strains play a 
major role (Dubé 1994). 
 

 
Figure 1. Multifibre mbeam for concrete structures (after 
Guedes et al. 1994) 

 
The multifibre beam element developed herein 

employs the standard Hermite polynomial shape 
functions to describe the variation of the displace-
ment field along the beam. For the Euler-Bernoulli 
element, the shear forces are computed at the ele-
ment level through the equilibrium equations. Rein-
forcement bars are introduced as special fibres, 
whose behaviour is obtained as a combination of 
those for concrete and steel (mixture law). The dif-
ference with “classical” beam elements concerns the 
cross section behaviour, i.e. the relation between the 
generalized strains e  and the generalized stresses s . 
In the general 3D case the latter includes: 

( )Tzyx MMMN  =s  and ( )Tzyx χχθε  =e  (10) 

where N  is the normal force, xM  the torque, yM and 
zM  are the bending moments, ε  the axial strain, xθ  

the twist, yχ  and zχ  the curvatures. The cross sec-
tion behaviour is expressed with the constitutive ma-
trix : 
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where the coefficients are obtained by integration 
over the cross section (y and z axes) : 
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where E and G are Young’s and shear moduli which 
vary in y and z. The chosen moduli can be initial, se-
cant or tangent, depending upon the iterative algo-
rithm used to solve the global equilibrium equations. 
The components of the constitutive matrix are com-
puted by means of numerical integrations, often with 
one Gauss point per fibre. For the Euler-Bernoulli 
element, the shear forces are computed at the ele-
ment level through the equilibrium equations (in-
cluded in the Hermite polynomial shape functions).  

When dealing with structures such as shear walls, 
which posses the slenderness ratio far from the clas-
sical beam ones, a more reliable representation of 
shear deformations and shear stresses has to be pro-
vided. One possibility in that respect is to use the 
classical Timoshenko beam model, which can de-
scribe the constant shear strain. The main difficulty 
of developing the finite element implementation of 
the Timoshenko beam model concerns the so-called 
shear locking phenomena, or inability of the stan-
dard finite element approximations to represent pure 
bending vanishing shear modes. A number of differ-
ent remedies to shear locking problem has been pro-
posed, ranging from selective or reduced integration, 
assumed shear strain, enhanced shear strain or hier-
archical displacement interpolations. A recent work 
of Kotronis (2000) extends these ideas in order to 
construct shear locking remedies for a mulifibre Ti-
moshenko beam. 

3 CONCRETE MODELLING 

Concerning the concrete constitutive equations, a re-
fined modelling within the earthquake engineering 
scope should account for decrease in material stiff-
ness as the microcracks open, stiffness recovery as 
crack closure occurs, inelastic strains concomitant to 
damage and induced anisotropy. The latter is ob-
tained by an anisotropic damage model based on 
Continuum Damage Mechanics. The model is writ-
ten within the thermodynamics framework and in-
troduces only one damage 2nd order tensor variable. 
To describe the damage evolution, a damage crite-
rion of Mazars (Mazars 1984) type is used. It intro-
duces an equivalent strain computed from the posi-
tive part of the strain tensor. The numerical scheme 
used for the implementation in a F.E. code is im-
plicit, with all the advantages of robustness and sta-



bility. However, the constitutive equations of the 
anisotropic damage can be solved in an exact way on 
an integration time step. The calculation of the dam-
age and of the stress is then completely explicit from 
a programming point of view. 

3.1 Elasticity-damage coupling 
The damage state is represented by the 2nd order 
tensor D  and there is one known thermodynamics 
potential *ρψ  (Ladevèze 1983) from which derives a 
symmetric effective stress σ~  independent from the 
elasticity parameters (Lemaitre & Desmorat 2000) : 
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with E, ν the Young modulus and Poisson ratio of 
initially isotropic elasticity and [ ]1σσσ TrD 3/1−=  is 
the deviatoric stress and where HD  the hydrostatic 
damage DTrDH 3/1= . 

Quasi-brittle materials such as concrete exhibit a 
strong difference of behavior in tension and in com-
pression due to damage. This micro-defects closure 
effect usually leads to complex models when dam-
age anisotropy is considered (Ladevèze 1983, 
Chaboche 1993, Dragon et Halm 1996) and the pur-
pose here is to show that it is important for cyclic 
applications to consider damage anisotropy with a 
quasi-unilateral effect acting on the hydrostatic 
stress and on the deviatoric one. The thermodynam-
ics potential writes: 
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−.  corresponds to the negative part of a tensor, ex-
pressed in its eigen-coordinates. In order to keep dif-
ferentiability properties of the Gibbs free energy, the 
positive part D

+σ  of Dσ  has to be carefully built 
(Ladevèze 1983). The following eigenvalue problem 
(eigenvalues Iλ  and corresponding eigenvectors IT

r
) 

has to be solved : 
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The norm being defined as : ( ) IJ
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rr 2/1D1 . 

The positive part of the deviator is then expressed 
as: 
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The elasticity law reads 
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and defines the symmetric effective stress σ~  inde-
pendent from the elasticity parameters, : 
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The notation 
+

x  stands for the positive part of a 
scalar, 

+
x = x if x > 0, 

+
x  = 0 else.  

3.2 Damage threshold function 
As for plasticity, the elasticity domain can be de-
fined through a criterion function f such as the do-
main f < 0 corresponds to elastic loading or unload-
ing. Many criterion can be used, written in terms of 
stresses such as plasticity criteria, strains, or strain 
energy release rate density leading or not to dila-
tancy in compression. The purpose here is to built a 
constitutive model with a restricted number of mate-
rial parameters, robust and easy to implement in Fi-
nite Element computer codes. Dilatancy will not be 
taken into account and one will accept an open crite-
rion for the tricompression states. These remarks 
lead us to the simple choice of Mazars criterion, 
function of the positive extensions Iε  of the Ith 
principal strain Iε  , 

( )Dtrf κε −= ˆ  with ∑==
++

2:ˆ Iεε εε  (19) 

where ε̂  is the equivalent strain for quasi-brittle ma-
terials and κ is the elastic strain limit in tension. Dif-
ferent expressions for the equivalent strain may be 
adopted, allowing dealing with biaxial behaviour in 
a more appropriate way. For example, one can con-
sider the de Vree (de Vree et al. 1995) formulation :  

( )
( )

( ) ( ) 22
2
12

2

1 1
12

21
1

2
1

212
1ˆ JkIk

k
I

k
k

ννν
ε

+
−

−
−

+
−
−

=  (20) 

with εTrI =1  and εε :2/16/1 2
12 −= IJ . The biaxial re-

sponse of anisotropic modelling using Mazars or de 
Vree equivalent strain is given in figure 2 and 3. 

3.3 Damage evolution laws 
To propose a damage model written in the thermo-
dynamics framework, consider a damage pseudo-
potentiel 

+
= ε:YF  where ε  acts as a parameter so 

that the damage evolution law is derived from the 
normality rule as  
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The damage multiplier λ&  is determined from the 
consistency condition f = 0, f&  = 0. with )(ˆ ξκε −=f , 

and, ( )Iε
ξ
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Figure 2. Elasticity and rupture for the Mazars equivalent 
strain. 
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Figure 3. Elasticity and rupture for the de Vree equivalent 
strain. 

 
Concerning the consolidation function κ to account 
for damage increase in tension as well as in com-
pression, a possible choice is: ( )ξκκ = . One has still 
to define the function κ. The simplest choice is to 
consider a linear function introducing two parame-
ters only (law 1): the damage threshold κ0 = κ(0) and 
a damage parameter A as  

( ) 0
1)( κξκ +=
A

D  (22) 

Damage anisotropy is different in tension and in 
compression. It affects differently the elasticity law 
and a strong difference in tension and in compres-
sion is finally obtained with the quite simple damage 
evolution law 1 (figure 1). Important point, this fea-
ture is gained with the consideration of one (tenso-
rial) damage variable only in accordance with the 
thermodynamic definition of a state variable: if one 
degradation mechanism is observed, only one dam-
age variable shall represent the micro-cracks or mi-
cro-defects pattern, whatever the material is in ten-
sion or in compression. The dissymmetry is 
nevertheless not sufficient with the linear κ-function 
with a too high damage rate in compression leading 
to a non physical snapback. One prefers then to con-
sider as damage evolution law:  
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with a a material parameter of the order of magni-
tude the value of the strain reached in compression. 
This defines κ−1 and κ as  
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3.4 Model responses 
Using the following material parameters (E = 42 
GPa, ν  = 0.2, κ 0 = 5 10-5, A = 5 103, a = 2.93 10-4), 
the uniaxial response of the model is given in figure 
4 for compression loading. The cyclic behaviour is 
presented in figure 5. The unilateral behaviour as 
well as the damage deactivation when passing from 
tension to compression are recovered. 

3.5 Numerical implementation 
The anisotropic damage model is in fact quite simple 
to implement in a FE code. A global resolution of 
the equilibrium equations gives the displacements at 
time 1+nt  with the internal damage variable D  = 

1+nD  kept unchanged from the last computed incre-
ment nt . The strains 1+nε  at each Gauss point are 
calculated from the elements interpolation functions. 
To integrate the constitutive equations means to de-
termine the stress 1+nσ  and the damage 1+nD  at time 

1+nt . An iterative process, not described here, made 
of global equilibrium resolutions followed by local 
time integration of the constitutive equations often 
takes place. One focuses here on the numerical 
scheme for the local integration of the damage law.  
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Figure 4. 3D model response in compression. 
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Figure 5. Cyclic uniaxial model response Tension - Compres-
sion – Tension. 

 
Compute the equivalent strain : 

+++++ = 111 :ˆ nnn εεε  (25) 

Make a test on the criterion function : 

( )nnf Dκε −= +1ˆ  (26) 

If f ≤0, nn DD =+1  (material behaves elastically), else 
the damage must be corrected by using the damage 
evolution law discretized as 

+++ Δ=−=Δ 11 nnn ελDDD  (27) 

The damage multiplier is determined from the con-
sistency condition numerically written 
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with 1
11 max: −

++++ = κε Inn εD  being known and 
the exact actualisation of D  : 

+++ Δ+= 11 nnn ελDD  (29) 

Stresses computation : Using the elasticity law allow 
for the computation of the effective stress tensor ( Ε  
is the elastic Hooke tensor), 

11 :~
++ = nn εΕσ  (30) 

The stress tensor is obtained through the relation be-
tween the effective stress tensor and the stress tensor 
in an anisotropic framework (equation 18). 

The numerical scheme is fully implicit, therefore 
robust, but it has the main advantage of the explicit 
schemes: there is no need of a local iterative process 
as the exact solution of the discretized constitutive 
equations can be explicited (Desmorat et al. 2004).  

4 EXPERIMENTAL TESTS ON RC 
STRUCTURES 

A full nonlinear pseudo-dynamic test with substruc-
turing is proposed. A reinforced concrete structure, 
shown in figure 6 is considered. The clamped frame 
is loaded with a dynamic seismic signal applied on 
its foundation. The damage model is applied for con-
crete material, and a nonlinear plastic behaviour is 
chosen for steel bars. Computational time is limited 
in the following by taking into account a multifibre 
model with the Finite Element Code CAST3M. A 
distributed loading mass m is applied on the upper 
beam and on the right middle one. A concentrated 
loading mass M is applied in the middle of the left 
beam, with M >> m. The frame failure is supposed 
to occur after the rupture of the left beam, as a low 
level of damage occurs in the rest of the structure. 
Then, just the left beam is tested and its stiffness is 
obtained experimentally (Laborderie 1991) as the re-
sponse of the rest of the structure is computed. An 
additional condition is applied on the structure: hori-
zontal displacements of the beam ends are equal. By 
the way, just a single degree of freedom is controled 
on experimental setup. This assumption is valid in 
that case, where horizontal stiffness is much greater 
than the vertical one. The experimental set-up for 
testing RC beams under cyclic three points bend test 
is presented in figure 7. 

A first experimental result is presented in figure 
8, it shows the vertical displacement of the centre of 
the beam during the first seconds of the signal. The 
realization of quasi-static tests enables us to perform 
more precise measurements than in the case of tests 
in dynamics. At critical states of the seismic struc-
tural response, it is possible to carry out field meas-



urements via digital images correlation (Hild 2002). 
First results of this type are presented for three mo-
ments of the response: at the beginning of the earth-
quake, for a maximum negative moment and for a 
maximum positive moment. Placed at one third of 
the beam, the camera makes it possible to observe 
cracks openings in shear. Figure 9 presents the field 
of horizontal displacement. Openings of cracks from 
50 to 700 microns thus could be observed at various 
instants. 

 
 

 
 
 
 
 
 

 
Figure 6. Substructuring decomposition for the nonlinear test-
ing. 
 
 
 
 
 
 
 
 
 

 
 
Figure 7. Experimental set-up for cyclic three points bend tests 
on RC beams. 

5 CONCLUSIONS 

Pseudo-dynamic tests with substructuring  allow 
dynamic studies of large structures with a moderate 
experimental setup. Inertia forces are computed and 
the critical part of the structure is statically tested, 
while the non-critical parts of the structure are mod-
elized. Based on this approach, our work focuses 
particularly on the damage model used for the mod-
elized parts of the structure, and on the experimental 
measurements of damage on the tested structure. Af-
ter a recall of the PSD test basis, we introduce an 
anisotropic damage model, based on a second order 
damage tensor, allowing describing induced anisot-
ropy and crack closure with just five parameters. 
This model is used in the study of a reinforced con-
crete clamped frame, loaded with a seismic signal. 
One overloaded beam of the frame is experimentally 
tested, as the rest of the structure is modelized. Digi-
tal image correlation technique is used to study 
crack apparition and closure, allowing a fine identi-
fication and validation of the damage model. Ex-
perimental results validate the necessity to take into 

account the low damage level of the non-critical 
parts. 
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Figure 8. Experimental mid-span deflection. 
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Figure 9. Results of digital image correlation analysis per-
formed on the tested RC beams 
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