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R&DO, Institut de Recherche en Génie Civil et Mécanique, Ecole Centrale de Nantes, Nantes, France

Interaction stresses that are at the origin of non locality are expected to vanish at the boundary of a solid, in the
normal direction to this boundary. Existing models do not account for such an effect. We introduce tentative
modifications of the classical non local damage model aimed at accounting for this boundary layer effect in a
continuum modelling setting. Finite element simulations of size effect on notched and unnotched specimens are
performed. For the same set of model parameters, including the internal length, the fracture energy derived from
the size effect test method is quite different according to both approaches. Parameters in the size effect laws
for notched and unnotched specimens, obtained from computation of geometrically similar bending beams, are
more consistent with the modified non local model compared to the original non local formulation.

1 INTRODUCTION
Most failure models for strain softening materials
involve non locality. Whether non locality is intro-
duced in an integral or in a gradient format, an in-
ternal length is added to the material description.
Such constitutive relations provide consistent contin-
uum failure models for progressive cracking in quasi-
brittle materials (see e.g. (Bažant and Jirasek 2002))
or ductile failure in alloys (see e.g. (Leblond et al.
1994)). In quasi-brittle materials at least, non local-
ity finds its origin in the interaction between grow-
ing defects in the course of failure. When a mi-
crocracks open, stresses are released and the stress
field in the neighbourhood of each crack is modi-
fied. This modification may induce further cracking
elsewhere, even if the applied loads are kept con-
stant (amplification of stresses). Interactions may be
approximated following several schemes (Kachanov
1987; Fond and Berthaud 1995; Kachanov 1994) and
folded into micro-mechanical damage based mod-
els (see e.g. Refs (Bažant 1994; Pijaudier-Cabot and
Berthaud 1990; Pijaudier-Cabot et al. 2004)). There
are at least two outcomes from these approaches: first,
the weight function which is introduced in the non lo-
cal averaging, along with the internal length, is recov-
ered; second this weight function depends on the state
of damage and it is direction dependent with respect
to the state of stress. Cracks may shield each other or

amplify the interaction stresses acting in their neigh-
bourhood.

Boundary effects are among the pending issues in
non local modelling for which very little is known
from an experimental or a theoretical point of view.
Nearby the boundary of the solid, interactions be-
tween defects are expected to be different compared
to those observed in the bulk material. Therefore,
micromechanics suggests that non locality should
change in a boundary layer at the surface of solids.
In continuum non local models, boundaries are, how-
ever, usually dealt with arbitrarily.

In integral models the weight function involved in
the non local average is chopped off and normalized
(Pijaudier-Cabot and Bažant 1987). It follows that the
influence of a point A located nearby a boundary on
a point B located in the bulk of the solid is not the
same as the influence of B on A. Due to this trun-
cature of the interaction domain, the weight function
centered at point A and entering in the non local av-
eraging at point A is not the same as the weight func-
tion centered at point B and entering in the non lo-
cal averaging at point B. This peculiarity of integral
non local models was pointed out on many occasions
(see e.g. (?; Bažant and Pijaudier-Cabot 1988)). It is
at the origin of the loss of symmetry of the tangent
operator in the non local integral formulations. Be-
cause the non local interactions are changing nearby
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the boundary of the solid, the constitutive formula-
tion (Pijaudier-Cabot and Bažant 1987) does not de-
rive from a thermodynamic free energy potential. The
modified symmetric non local damage theory due to
Borino and coworkers (Borino et al. 2003) derives
from a potential and fulfills thermodynamic princi-
ples. To this end, the weight function is modified
near the boundary. The background for such a mod-
ification is the symmetry of the non local interac-
tions and energy considerations, it is not related to
some specific boundary effect expected from micro-
mechanical analysis.

In gradient enhanced models, the normal compo-
nent of the gradient of the non local variable is con-
strained to be zero on the boundary. Consequently, the
free boundary condition on the non local variable is
the same as the condition that would be induced by
an axis of symmetry. The underlying assumption is
that the non local interactions nearby a boundary of
the solid are the same as the non local interactions
that would be observed nearby an axis of symmetry.
It can be hardly admitted, however, that the interac-
tion between defects and a boundary surface is the
same as the interaction between defects distributed
symmetrically in a bulk material. The interaction of
a small defect on a large one is not expected to be the
same as the interaction of a large defect on a small
one (by interation, we mean the fluctuations of the lo-
cal stress and strain fields due the presence of another
defect located nearby the considered defect). This non
symmetry of the non local interactions seems to better
correspond to the non symmetry observed in integral
models, whereas it dos not exist in gradient models.

In displacement based gradient models (Rodriguez-
Ferran et al. 2005; Jirasek and Marfia 2005), the dis-
placements ought to be equal to the non local dis-
placements on the boundary of the solid. This is again
a different boundary condition but as we will see next,
it seems to be closer to expected results from mi-
cromechanics.

In all these cases, there is very little theoretical mo-
tivation for the boundary conditions which appear in
non local models. It may be argued that boundary
conditions are not very important. Generally, cracks
propagate inside the structure and the fracture pro-
cess zone is located in the bulk material. Initiation of
cracking, however, very often occurs from the bound-
ary of a solid. The simplest situation is that of bending
beams considered in this paper. It is expected that the
boundary effect may have some influence on the initi-
ation condition of cracking and this is the primary mo-
tivation for the present study. Once a crack has propa-
gated, it forms a new, evolutive, boundary of the solid
and the non local formulation should account for this
additional boundary effect. This case is outside the
scope of this paper, along with the issue of non local

effects nearby interfaces.

2 INTUITIVE REASONING FROM MICRO-
MECHANICS

Our purpose is to provide here some hint on the
boundary effects induced by non locality and there-
fore to investigate the effect of subsequent modifica-
tions of non local averaging nearby boundaries in in-
tegral damage models. Let us start with some intu-
itive argument about non locality nearby the bound-
ary of a solid (Krayani et al. 2009). Consider a finite
body that contains a population of micro-cracks or
micro-voids in an elastic matrix. Each defect is de-
scribed explicitly and the mechanical response of the
solid is the result of the deformation of the elastic ma-
trix and of the deformation of the defects (e.g. micro-
crack openings) due to the applied loads. The interac-
tion between the defects is computed using a super-
position scheme. One may choose the simple tech-
nique due to Kachanov (Kachanov 1987). Accord-
ing to Kachanov’s superposition scheme, the state of
stress and the displacements in this body containing
defects is computed as the sum of two sub-problems:

• Sub-problem I: the solid is considered without
any void and loaded by the remote boundary con-
dition corresponding to σ∞

.

• Sub-problem II: The solid contains the defects.
It is free from any external load / applied dis-
placement. Inside each defect, surface forces are
applied so that the stress vectors due to σ

∞
com-

puted at the imaginary location of the defects in
sub-problem I are exactly equilibrated. This is
required in order to recover, after superposition,
the fact that internal defect surfaces are free of
any load.

This superposition is schematised in Fig. (1) in the
case of an infinite body containing two voids. The
remote traction σ

∞
is transformed into distributed

forces �P1 = �P2 = ... = �Pi = −σ
∞

.�n acting inside each
defect whose inner surface is defined by the normal
vector �n. Each distributed force �Pi is the sum of an ex-
ternally applied load inside defect i and the stress vec-
tors generated by the loads applied in the other voids j
computed on the location of void i. These interactions
are nonlocal terms contributions typically. This super-
position scheme can be applied in principle to the case
of a finite body too (Fond and Berthaud 1995).The
sum of the interaction forces due to the other defects,
the interaction forces due to the boundary of the solid,
and the applied surface forces inside this defect equi-
librate the stress vectors due to σ

∞
computed at the

imaginary location of the defect.
The equivalent homogeneous material which is

the macroscopic counterpart of the above solid with

Proceedings of FraMCoS-7, May 23-28, 2010

hThD ∇−= ),(J                             (1) 
 

The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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Figure 1: Infinite elastic body containing two voids.

micro-cracks is a continuum with an overall stiff-
ness which is a function of the density, size and
shape of the micro-cracks (see e.g. (Budiansky and
O’Connel 1976)). The interaction stresses computed
from the present superposition scheme are at the ori-
gin of non locality in a continuum description. Other
frameworks, e.g. based on a generalisation of Hashin-
Shtrikman variational principles (Hashin and Shtrik-
man 1962) as discussed by Drugan and co-workers
(Drugan and Willis 1996; Monetto and Drugan 1962)
provide also some useful information about the influ-
ence of interactions in upscaling techniques.

Let us focus attention on the boundary of the solid.
Overall, it remains always free from any load, at least
in subproblem II in which interactions between de-
fects and between defects and the boundary are com-
puted. It means the sum of the stress vector due to
the interactions, computed normal to the boundary,
always cancels whatever the distribution of defects.
If non locality of the constitutive response of the ho-
mogenised solid is understood as the consequence of
upscaling interactions towards a continuum setting,
non locality should vanish on the free surface, in the
normal direction to this surface. Close to the bound-
ary, and in the normal direction to the boundary, there
should be a layer in which non locality increases go-
ing farther from the boundary in order to reach the
non locality expected in an infinite solid.

This simple qualitative reasoning implies, in a quite
general context, that on the surface of the solid (along
the normal of this surface), local and non local quan-
tities should be equal. This provides a rational ground
for implementing the corresponding boundary con-
ditions in existing non local models. This is rather
straightforward in displacement based gradient mod-
els but it remains to be discussed in non local inte-
gral or gradient models. We shall discuss a modified
phenomenological non local integral model that sat-
isfies the condition of local material response on the

boundary of the solid only, in the normal direction to
the boundary. We will then compare the original and
modified formulation in structural analyses and we
will show that the modified non local model provides
a more consistent fit of the size effect laws on both
type of specimens than the original non local model.

3 DAMAGE MODEL
Before considering boundary effects, let us recall the
main equations involved in the damage model used in
the present study.

3.1 Local damage model
The classical stress-strain relation for this type of
model reads:

σij = (1−D)Cijklεkl (1)

where σij and εkl are the components of the stress
and strain tensors, respectively (i, j, k, l ∈ [1,3]) and
Cijkl are the components of the fourth-order elastic
stiffness tensor. The damage variable D represents a
measure of material degradation which grows from
zero (undamage material with the virgin stiffness) to
one (at complete loss of integrity). The material is
isotropic, with E and ν the initial Young’s modulus
and Poisson’s ratio respectively.

For the purpose of defining damage growth, a scalar
equivalent strain εeq is introduced, which quantifies
the local deformation state in the material in terms
of its effect on damage. In this contribution, Mazars’
definition of the equivalent strain is used (Mazars
1984):

εeq =

√√√√ 3∑
i=1

(
〈εi〉+

)2
(2)

where 〈εi〉+ are the positive principal strains. Damage
growth is governed by the loading function:

f(ε, k) = εeq(ε)− k (3)

k equals the damage threshold εD0
initially, and dur-

ing the damage process it is the largest ever reached
value of εeq. The evolution of damage is governed by
the Kuhn-Tucker loading-unloading condition:

f(ε, k) ≤ 0, k̇ ≥ 0, k̇f(ε, k) = 0 (4)

The damage variable D is determined as a linear
combination of two damage variables Dt and Dc,
that represent tensile damage and compressive dam-
age respectively, by the help of two coefficients αt and
αc which depend on the type of stress state (Mazars
1984):
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
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water. This expression is valid only for low content 
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D = αtDt + αcDc (5)

Dt,c = 1−
1−At,c

εeq
+

At,c

exp (Bt,c (εeq − εD0
))

(6)

Standard values of the model parameters in the
damage have been given in Ref. (Mazars 1984).

3.2 Non local formulation
In the integral-type non local damage models, the lo-
cal equivalent strain is replaced by its weighted aver-
age:

ε̄eq (x) =

∫
Ω

Ψ(x, ξ)εeq (ξ)dξ (7)

with Ω the volume of the structure and Ψ(x, ξ) the
weight function. It is required that the non local oper-
ator does not alter the uniform field, which means that
the weight function must satisfy the condition:∫

Ω

Ψ(x, ξ)dξ = 1 ∀x ∈ Ω (8)

For this reason, the weight function is recast in the
following form (Pijaudier-Cabot and Bažant 1987):

Ψ(x, ξ) =
Ψ0 (x− ξ)

Ωr (x)
(9)

with

Ωr (x) =

∫
Ω

Ψ0 (x − ξ)dξ (10)

where Ωr (x) is a representative volume and
Ψ0 (x− ξ) is the basic non local weight function
which is often taken as the polynomial bell-shaped
function (Bažant and Jirasek 2002), or here as the
Gauss distribution function:

Ψ0 (x − ξ) = exp

(
−

4‖x − ξ‖2

l2c

)
(11)

lc is the internal length of the non local continuum.
Preserving the uniform field in the vicinity of the
boundary makes the averaging in Eq. (9) not symmet-
ric with respect to its arguments x and ξ. This lack of
symmetry leads to the non-symmetry of the tangent
operator (Bažant and Pijaudier-Cabot 1988; ?; Jirasek
and Patzàk 2002). A symmetric non local formulation
can be devised (Borino et al. 2003). The weight func-
tion becomes:

Ψ(x, ξ) =

(
1−

Ωr (x)

Ω
∞

)
δ (x− ξ)

+
Ψ0 (x− ξ)

Ω
∞

(12)

where δ (x− ξ) is the Dirac function and Ω
∞

is the
representative volume in the infinite solid where it
has a constant value. The first term is local, it van-
ishes for points far from the boundary and the original
weight function in Eq. (9) is recovered. According to
this modified formulation, the computation of the non
local equivalent strain becomes:

ε̄eq (x) = εeq (x) + R (13)

with the non local residual R defined as:

R =
1

Ω
∞

∫
Ω

Ψ0 (x− ξ) (εeq (ξ)− εeq (x))dξ (14)

The integrand in the right hand-side term of this equa-
tion involves the difference between the local equiva-
lent strain at the considered point and the local equiv-
alent strain in its neighborhood. It is clearly a non lo-
cal contribution to the quantity (non local equivalent
strain) that controls damage. This non local distribu-
tion, however, does not vanish on the boundary of the
solid. To this extend, this modified formulation is not
consistent with the boundary effects discussed in the
previous section, although it derives from a potential
and it is symmetric.

3.3 Modified non local model
This modification of the non local damage model has
been proposed by (Krayani et al. 2009). It is based
on the original non local formulation (Equation (9)),
in which a transformation of the coordinate system is
introduced. Within a 2D setting, the following map-
ping is defined in the weight function:

‖x − ξ‖ = lc

√
(x1 − ξ1)

2
/
a

2
+ (x2 − ξ2)

2
/
b
2

(15)

in a coordinate system where subscript 1 refers to a
vector that is normal to the closest boundary of the
solid and subscript 2 refers to the orthogonal direc-
tion. a is the minimum between the internal length
and the distance from the point to the closest bound-
ary and b is assumed to be the minimum between the
internal length and the distance to the boundary of the
solid in the orthogonal direction. When the non lo-
cal average is computed at points close to a boundary,
namely at a distance which is smaller than the inter-
nal length, the weight function is modified. The rela-
tive weight of the points located in the neighborhood
of point x at which the average is computed are de-
creased as x is getting close to the boundary. If x is lo-
cated on the boundary exactly, the weight function is a
Dirac-delta function. The material response becomes
local which is consistent with micromechanics. This
transformation may be extended to a 3D formulation
without difficulties.
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



In the sequel, we shall denote as ERF the modified
formulation and RWF the original non local formula-
tion. We are going to compare these two formulations
on structural computations of three point bend speci-
mens.

4 THREE POINT BENDING SIZE EFFECT
TESTS

A salient characteristics of non local modelling is
structural size effect, understood here as the depen-
dence of nominal strength on the structural size.
The response of geometrically similar specimens is
not geometrically similar. The size of the fracture
process zone (FPZ) is controlled by the internal
length (Mazars and Pijaudier-Cabot 1996). When the
size of the structure changes, the ratio between the
size of the FPZ, which is constant, and the size of the
structure is changing too. This produces differences
in energy release during the propagation of a crack
and size effect on the nominal strength. Detailed ex-
planations can be found in the textbook by Bažant and
Planas (Bažant and Planas 1998), along with compar-
isons with experimental data on quasi-brittle materi-
als such as concrete.

Our aim is here to compare the original (RWF) and
modified (ERF) non local damage formulations. We
will start first with unnotched specimens and con-
sider three point bending tests with three geometri-
cally similar sizes (see Figure 2). The specimens with
various height D = 80, 160, 320 mm are referred to
as small, medium and large beam respectively. Sim-
ulations are 2D plane stress calculations. The ele-
ment size was kept constant in the FPZ, and small
enough compared to the internal length (at least 3
times smaller). The model parameters used for these
simulations are: E = 3.85× 104 MPa, ν = 0.24, At =
0.95, Ac = 1.25, Bt = 9200, Bc = 1000 and εD0

=
3.0× 10−5. The internal length is equal to 10 mm.

D

3DD/2 D/2

P

Figure 2: Three point bending test: Geometry and loading
.

4.1 Size effect on unnotched specimens
The nominal strength now is computed according to
the formula:

σN =
9

2

Pu

bD
(16)

It is the maximum tensile stress computed at peak
load according to the elastic beam theory. b is the
thickness of the beam (unit thickness in our compu-
tations). The nominal strengths are listed in Table 1.

Size D (mm) σN (MPa) σN (MPa)
(RWF) (ERF)

small 80 3.70 3.62
medium 160 3.48 3.45

large 320 3.38 3.38

Table 1: Numerical results for three different sizes with
RWF and ERF (lc = 10 mm)

For this set of specimens, we have also run the cal-
culations with an internal length of 40 mm. The re-
sults are shown in Table 2.

Size D (mm) σN (MPa) σN (MPa)
(RWF) (ERF)

small 80 4.91 4.46
medium 160 4.06 3.95

large 320 3.69 3.61
Table 2: Numerical results for three different sizes with
RWF and ERF (lc = 40 mm)

We notice an influence of the type of nonlocal for-
mulation and of the internal length. The difference be-
tween the ERF and RWF decreases with decreasing
internal length (smaller non local effect).

As pointed out by Bažant, there is first a layer of
distributed damage that forms at the bottom of the
beam in the tensile part. The thickness of this bound-
ary layer should be a function of the internal length.
At peak load, a crack forms in the center of the beam.
The crack is perpendicular to the distributed damage
layer, it starts from this layer, inside the beam and not
directly from the boundary. Therefore, the effect of
the boundary on the inception of the crack is small
and peak loads are similar.

Let us now use Bažant’s size effect law (Bažant and
Planas 1998) for the case of unnotched beams:

σN = fr∞

(
1 +

Db

D

)
(D � Db) (17)

where Db and fr∞ are constants. The first one is the
thickness of the boundary layer in which damage is
distributed prior to localised crack inception and the
second one is the strength for a specimen of infinite
size. This is the modulus of rupture of a infinitely
large specimen. Db and fr∞ are obtained by fitting
our computed values of the nominal strengths with the
size effect law (Tables 3 and 4).

One can observe in this table that fr∞ is almost
constant and does not depend on the internal length.
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



RWF ERF
lc = 10 mm lc = 10 mm

fr∞ (MPa) 3.27 3.30
Db (mm) 10.34 7.82

Table 3: fr∞ et Db for lc = 10 mm, original and modified
weight functions.

RWF ERF
lc = 40 mm lc = 40 mm

fr∞ (MPa) 3.26 3.35
Db (mm) 40.16 26.62

Table 4: fr∞ et Db for lc = 40 mm, original and modified
weight functions.

The tensile strength of the material is, according to the
constitutive relations, equal to 2 MPa. Here, the mod-
ulus of rupture fr∞ computed from the FE analyses
of specimens of different sizes is approximately 1.65
times the tensile strength. This is close to the usual
ratio of 1.5 between tensile strengths measured by 3
point bending test and direct tension respectively

According to dimensionnal analysis, Db should
proportional to the internal length (Bažant and Planas
1998). This proportionality is almost recovered if we
compare table 3 and table 4.

In the original RWF formulation, Db is approxi-
mately equal to the internal length. Due to the bound-
ary effect, it decreases in the ERF formulation. This
is again consistent with the fact that non local effects
are decreased nearby the bottom face of the beam.

4.2 Size effect on notched specimens
The notch, now located at mid-span, is 0.2D high.
We shall focus here on computations with an inter-
nal length of 10 mm but trends are the same for other
values of the internal length.

The ultimate loads Pu for the three sizes with the
two approaches are obtained form the finite element
calculation and the corresponding nominal strengths
are computed according to the following equation:

σN =
9

2

Pu

Db(0.82)
(18)

It is the maximum tensile stress in the beam computed
at the tip of the notch according to the elastic beam
theory. At the peak, damage occurs nearby the tip of
the notch only and this is where the modification of
the non local model is important. Results, showing a
great sensitivity of the mechanical response of spec-
imens to the weight function, have already been ob-
tained, e.g. by Jirasek and co-workers (Jirasek et al.
2003). Table 5 shows the nominal strength computed
for the three sizes and according to the two non lo-
cal formulations.The numerical results are now in-

terpreted with Bažant’s size effect law for notched
beams (Bažant 1984):

σN = Bfr∞(1 + D/D0)
−1/2 (19)

B is a dimentionless geometry-dependent parameter
and D0 is a characteristic size. For each formulation,

Size D (mm) σN (MPa) σN (MPa)
(RWF) (ERF)

small 80 3.72 3.24
medium 160 2.83 2.54

large 320 2.14 1.99

Table 5: Numerical results for three different sizes of the
notched beam with RWF and ERF (lc = 10 mm)

D0 and Bfr∞, identified from a linear regression as
explained in (Bažant and Planas 1998) are reported in
the Table 6.

RWF ERF
Bfr∞ (MPa) 6.25 4.64

D0(mm) 42.42 71.42

Table 6: Bfr∞ et D0 of the notched beam of different
sizes for lc = 10 mm

There is a decrease of the maximum carrying ca-
pacity with the ERF formulation compared to the
original non local formulation. This decrease results
in the size effect law into a decrease of Bfr∞, that is
a decrease of fr∞ because B is constant and related
to the shape of the specimen only.

We may now compare the values of the modulus of
rupture fr∞ obtained from size effect on unnotched
specimens to those obtained with notched specimens.
B is calculated first according to Rilem recommanda-
tions (Rilem 1990) (B=1.11). Then, we take fr∞ ob-
tained for the unnotched specimens, multiply by B,
and compare the result with the value of the fit ob-
tained from size effect on notched specimens. Ideally,
the two values should be the same. Table 7 shows that
the relative error on the prediction of Bfr∞ is three
times smaller with the ERF formulation than with
the RWF one. In view of the high sensitivity of the
size effect parameters to the values of the peak loads
(Le Bellégo et al. 2003), an error of the order of 30%
is quite reasonable and the modified ERF formulation
provides consistent results for both type of size ef-
fects whereas it is not the case for the original non
local formulation.

We may also observe in Table 6 that D0 is increas-
ing in the ERF calculations compared to the RWF cal-
culations. It should be pointed out that the size effect
formula in Eq. (19) holds for sizes that are large com-
pared to D0. D is close to D0 and we may consider
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



Bfr∞ (MPa) RWF ERF
computed from unnotched 3.63 3.66

fit from notched 6.25 4.64
Relative error 72% 27%

Table 7: Bfr∞ computed from notched and unnotched
specimens

that it is more appropriate to implement here the uni-
versal size effect formula proposed by Bažant instead
of two separate formulae for notched and unnotched
specimens:

σN = Bfr∞(1 +
D

D0

)−1/2.

(1 + [(η +
D

Db

).(1 +
D

D0

)]−1) (20)

where η is taken here equal to 1. In order to obtain the
parameters in this formula, we consider first the case
of unnotched specimens. Eq. (20) reduces exactly to
Eq. (17) and the corresponding constants can be fitted.
We use then the data computed for notched specimens
and the corresponding value of B computed above
and we look for the value of D0 that provides the best
fit with the data. Figure 3 shows these fits obtained for
both non local formulations.

0

1

2

3

4

5

6

0 100 200 300 400

D

s
ig

m
a

RWF

RWF-calc

ERF

ERF-calc

Figure 3: Fits of the universal size effect law on notched
specimens according to the RWF and ERF formulations.

These fits are obtained for D0= 210 mm with the
RWF formulation and D0= 140 mm with the ERF for-
mulation. Note that the agreement is again better with
the modified non local formulation than with the orig-
inal non local one. Finally, it is possible to compute
the fracture energy from the size effect law.

Gf = Bf 2
r∞.D0.g/E (21)

where E is the Young’s modulus and g is related to the
geometry of the specimen (here g=1.1116 according

to (Rilem 1990)). For the RWF formulation, we obtain
Gf=80 N/m and for the ERF formulation we obtain
Gf=54 N/m. The fracture energies computed accord-
ing to the original and modified non local formulation,
and defined according to the size effect method, are
very different.

5 CONCLUSION
We have discussed a modification of the original non
local damage model that is consistent with the intu-
itive argument that non locality should vanish at the
boundary of a solid (in the direction normal the the
boundary) and should grow getting inside the solid.
The model remaps the coordinate system defined in
the weight function when the average is computed
close to the boundary.

The simulation of notched and unnotched speci-
mens of different sizes have been interpreted with the
help of Bažant’s size effect laws. With the modified
ERF formulation, it is possible to fit data for notched
and unnotched bending beams with the same set of
model parameters. It is not possible to achieve the
same results with the original RWF formulation. The
modulus of rupture needs to be changed in a range
beyond possible calibration errors. The fracture ener-
gies predicted according to the size effect technique
are also quite different with the modified and original
non local damage models.
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Bažant, Z. P. and J. Planas (1998). Fracture and
Size Effect in Concrete and Other Quasi-Brittle
Materials. Boca Raton and London.

Borino, G., B. Failla, and F. Parinello (2003). A sy-
metric nonlocal damage theory. International

Proceedings of FraMCoS-7, May 23-28, 2010

hThD ∇−= ),(J                             (1) 
 

The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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