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ABSTRACT: In this work, an analytical model is proposed for fatigue crack growth in concrete using the 
concepts of dimensional analysis and includes the following parameters – size independent fracture energy, 
structural size, initial crack length, loading ratio and change in energy release rate. By knowing the governed 
and the governing parameters of the physical problem and by using the concept of self-similarity, the relation-
ship among involved parameters is obtained. The coefficients of the law are calibrated using available ex-
perimental data in the literature. It is shown that the proposed fatigue law can capture the size effect and 
agrees well with the experimental results. 

1 INTRODUCTION 

Repeated loading causes the crack to grow and fi-
nally leading to the failure of the structure. This 
phenomenon is known as fatigue fracture. Fatigue 
behavior is well understood for metallic structures, 
where it causes irreversible material damage (Paris 
& Erdogan 1963). But for concrete, the behavior is 
more complicated due to the presence of large size 
fracture process zone (FPZ) at the crack tip as shown 
in Figure 1. FPZ is a zone wherein the cement ma-
trix is intensively cracked. Along the FPZ, there is a 
discontinuity in displacement but not in the stresses. 
Stresses are themselves a function of crack opening 
displacements. At the tip of the FPZ, the tensile 
stress is equal to tensile strength ( )'

t
f  of the mate-

rial and gradually reduces to zero at the tip of the 
true crack. It is assumed that under low cycle fatigue 
loading the decrease in load carrying capacity and 
stiffness degradation occurs primarily in the FPZ and 
not in the undamaged material (Foreman et al. 1967). 

Development of mechanistic approaches using 
the concepts of fracture mechanics, for the study of 
crack propagation due to fatigue loading had started 
with the well known Paris’ law (Paris & Erdogan 
1963) wherein crack growth increment per load cy-
cle is a function of applied stress intensity factor 
amplitude. Attempts have been made by many re-
searchers (Swartz 1978, Perdikaris 1989 and Baluch 
1989) to model crack growth of concrete by apply-
ing Paris’ law (Paris & Erdogan 1963). However, 
one important aspect, namely - the size effect has 
been scarcely reported in the literature concerned 
with fatigue of concrete. The first attempt was made 
by Bazant and Xu (Bazant & Xu 1991). They com-
bined their size effect law to the existing Paris’ law 

and proposed a size adjusted Paris’ law applicable 
for plain concrete, given by: 
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is the fracture toughness of an infinitely large 
structure, d is the characteristic dimension of the 
structure and d0 is an empirical constant. It gives the 
crack length increment per cycle as a power function 
of the amplitude of a size adjusted stress intensity 
factor. The numerical value of the transitional size is 
different for fatigue loading than the monotonic one. 
So, to take care of fatigue loading in the computa-
tion of fatigue law coefficients, transitional size has 
been adjusted and the adjustment factor used for d0 
happens to be ten times the monotonic one which 
really has no significance. A similar law has been 
proposed describing the fatigue fracture of high 
strength concrete for predicting crack growth (Ba-
zant & Shell 1993). However, concrete exhibits 
typically nonlinear fracture processes due to the 
large size process zone and makes this linear elastic 
fracture mechanics approach (LEFM) questionable. 

Slowik et al. (Slowik et al. 1996) proposed a lin-
ear elastic fracture mechanics based fatigue crack 
propagation law which included parameters such as 
the fracture toughness, loading history, and speci-
men size. This law applicable to variable amplitude 
fatigue loading is described by 

 



 
Figure 1. Fracture Process zone.  
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where KIsup is the maximum stress intensity factor 
ever reached by the structure in its past loading his-
tory; KIC is the fracture toughness; KImax 

is the 
maximum stress intensity factor in a cycle; N  is 
the number of cycles; ( ),  F a σ∆ is a function that 
takes into account the sudden overload on the crack 
propagation and m, n, p are constants for all struc-
tural sizes. Similar model based on the variation of 
Paris’ law has been proposed by Kolluru et al. (Kol-
luru et al. 2000). It is observed that crack growth due 
to fatigue loading comprises deceleration stage fol-
lowed by an acceleration stage and they developed 
analytical expressions for the crack growth in both 
the stages. But, the most important aspect of size ef-
fect has not been reported in this study. 

In the recent years, the concepts of dimensional 
analysis and self-similarity are used by many re-
searchers to study fatigue behavior of plain concrete. 
Carpinteri and Spagnoli (Carpinteri & Spagnoli 2004) 
have proposed a size dependent fatigue crack propa-
gation law for concrete that expresses the crack 
growth rate against the stress intensity factor range. 
The concepts of fractal geometry were used together 
with a new definition of fracture energy and stress 
intensity factor (SIF) based on physical dimension 
different from the classical ones. Spagnoli (Spagnoli 
2005) has derived a crack size dependent Paris’ law 
using similarity methods and fractal concepts. The 
form of the fatigue law is proposed based upon the 
assumption of an incomplete self-similarity. The au-
thor has only shown the dependency of the fatigue 
parameters on growth rate and has not obtained any 
closed form expression for the fatigue crack propa-
gation model. Carpinteri and Paggi (Carpinteri & 
Paggi 2007) have proposed an approximate relation-
ship between the Paris’ law coefficients C and m. 
Two independent approaches, self-similarity con-
cepts and the condition that the Paris’ law instability 
corresponds to the Griffith-Irwin instability at the 

onset of rapid crack growth have been used. Sain 
and Chandra Kishen (Sain & Chandra Kishen 2007) 
modified Slowik's law to include the effects of load-
ing frequency and overload function. The major 
limitation of the Slowik's model and the modifica-
tion made by Sain and Chandra Kishen (Sain & 
Chandra Kishen 2007) is that, these are not dimen-
sionally homogeneous due to empirical nature of the 
proposed equations.  

2 SCALING LAWS 

Scaling laws or power-laws which describe the power-
law relationship between different quantities give 
the evidence of a very important property of self-
similarity, wherein a phenomenon reproduces itself 
on different time and space scales. In construction of 
an analytical model, it is impossible to take into ac-
count all the factors which influence the phenome-
non. So, every model is based on certain idealization 
of the phenomenon. In constructing the idealiza-
tions, the phenomenon under study should be 
considered at intermediate times and distances. 
Therefore, every mathematical model is based on in-
termediate asymptotic. In fact, self-similar solutions 
not only describes the behavior of the physical sys-
tems under some special conditions but also de-
scribes the ‘intermediate asymptotic’ behavior of the 
solution to broader classes of problems i.e. the be-
havior in the regions where these solutions have 
ceased to depend on the details of the initial condi-
tions and boundary conditions (Barenblatt 1996, 2004). 
In this work, the phenomenon of fatigue crack 
propagation on the basis of similarity approach is 
considered. 

3 DIMENSIONAL ANALYSIS AND SELF-
SIMILARITY 

In any physical problem, we try to determine the re-
lationship among the physical quantities involved. 
Let us consider, there exists a relationship between a 
quantity a  which is to be determined from experi-
ments (governed parameter), and a set of quantities 
which are under experimental control (governing pa-
rameters), that can be written as 
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where ( )

1
......

k
a a  have independent physical dimen-

sions, i.e. none of these quantities have a dimension 
that can be represented in terms of a product of 
powers of dimensions of the remaining quantities 
and ( )

1
..........

k n
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+
 can be expressed as the product 

of powers of the dimensions of the parameters 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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where  is a function of non-dimensional terms Φ                 
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Applying Buckingham ∏  theorem Φ  turns out 

to be a function of (n-k) variables only. The quanti-
ties 

1
,........

n k−
∏ ∏  are called similarity parameters, 

and the physical phenomenon is termed similar if the 
dimensionless parameters 1

,........
n k−

∏ ∏  are identi-
cal. We shall now discuss two important terms asso-
ciated with dimensional analysis. (1) Self-similarity 
of first kind (2) Self-similarity of second kind. Let 
us consider the parameter 

1
a . This parameter is 

considered as non-essential if the corresponding di-
mensionless parameter 

1
∏  is too large or too small 

(tend to zero or infinity), giving rise to a finite non-
zero value of the function Φ  with the other similar-
ity parameters remaining constant. The number of 
arguments can now be reduced by one and we can 
write 
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where 

1
Φ  is the limit of the function Φ  as 

1
0∏ →  

or 
1

∏ ∞→ . This is called complete self-similarity or 
self-similarity of first kind. On the other hand for 

1
0∏ →  or 

1
∏ ∞→ , if Φ  tends to zero or infinity, 

then the quantity 
1
∏  becomes essential, no matter 

how large or small it becomes. However in some 
cases, the limit of the function Φ  tends to zero or 
infinity, but the function Φ  has power type asymp-
totic representation which can be written as,  
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where the constant β  and the non-dimensional pa-
rameter 

1
Φ  cannot be obtained from the dimen-

sional analysis alone. This is the case of incomplete 
self-similarity or self-similarity of second kind. 

4 FATIGUE CRACK PROPAGATION FOR 
PLAIN CONCRETE AND SELF-SIMILARITY 

The fatigue crack propagation phenomenon is gen-
erally analyzed in the medium amplitude range and 
in this range the phenomenon is characterized by an 
‘intermediate asymptotic’ nature (Barenblatt 1996). 
Assuming the crack growth rate (da/dN) as the pa-
rameter to be determined in the phenomenon, which 
is governed by the loading parameter characterized 
by change in energy release rate ( )G∆  and the 
characteristic dimension of the structure (D). Also fa-
tigue crack growth is governed by crack length (a), 
loading ratio (R) defined as the ratio of minimum to 
maximum stress amplitude and loading frequency 

( )ω . Material properties considered are size inde-
pendent fracture energy( )fG  and tensile strength ( )tσ .  
Now, we can write the above dependence as follows: 
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The governing variables are summarized with 

their physical dimensions expressed in the Length-
Force-Time class (LFT) in Table 1. Considering a 
state of no explicit time dependence and fG , tσ  
have independent physical dimensions, dimensional 
analysis gives  
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The non-dimensional quantities are 
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Now we need to analyze whether the number of 

arguments can be reduced further or not. Consider-
ing 

1
∏ , it is usually small in the intermediate range 

of fatigue crack growth and consideration of com-
plete self-similarity will make the crack growth in-
dependent of G∆ , so assuming incomplete self-
similarity in 

1
∏ , we can write 
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Generally, the parameter 

2
∏  is a large number 

and experimental results (Spagnoli 2005) have shown 
the dependence of crack growth rate on a. Therefore, 
consideration of incomplete self-similarity gives 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



Table 1. Governing variables of the fatigue crack growth phe-
nomenon in plain concrete.  

Variables Definitions Dimensions 

G∆  Stress intensity factor range FL-3/2 

fG  Fracture toughness FL-3/2 
a  Initial crack length L 
D  Structural size L 

t
σ  Tensile strength FL-2 
ω  Loading frequency T-1 
t  Time T 
R Loading ratio - 
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Rewriting the above Equation,              
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where m = 1- 1γ - 2γ , p = 1γ , s = 2γ  and Φ  = 
2

Φ . 
The exponents 1γ , 2γ  and the non dimensional pa-
rameterΦ , cannot be determined from the consid-
eration of dimensional analysis alone. These pa-
rameters can only be obtained either from a best 
fitting procedure on experimental results, or accord-
ing to numerical simulations. In the following sec-
tion, the parameters are determined through a cali-
bration process using the experimental results available 
in the literature. 

5 CALIBRATION OF THE PROPOSED MODEL 

In this section, the constants introduced during the 
formulation of the model are determined using the 
experimental results of Bazant & Xu (Bazant & Xu 
1991). They have tested a series of geometrically 
similar three-point beams under fatigue loading. The 
dimension details and the physical properties of 
these specimens are shown in Table 2. Size inde-
pendent fracture energy fG  was found to be 0.038 
N/mm (Bazant & Pfeiffer 1988). It could be seen 
that the nondimensional parameter Φ  is a function 
of ( )t f

D Gσ  and R and can be assumed to be a con-
stant for a particular material mix (same material 

properties) and constant loading ratio. For finding 
the coefficients, the input parameters are (da/dN), 
G∆  and a. The coefficients m, p, s and Φ  are de-

termined through an optimization process using the 
principle of least squares which means, the sum of 
squared residuals has its least value, a residual being 
difference between the observed value and the value 
obtained from the model. The best suited values m 
and p and s found to be equal to 4.4761 and 5.4113 and 

 

 
Figure 2. Relationship between Φ  and the non-dimensional 
parameter. 

 
0.0648 respectively and indeed can be considered as 
material constants. The parameter Φ  should ac-
count for specimen size and geometry. Figure 2 
shows the relationship between Φ  and the non di-
mensional parameter ( )t f

D Gσ  derived for the small, 
medium and large specimens. The resulting quad-
ratic best fit is given by, 
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where D is the depth of the specimen. Using the 
above equation one can obtain the value of the pa-
rameter Φ  for any size of specimen and grade of 
concrete. 

6 VALIDATION OF THE PROPOSED FATIGUE 
MODEL AND DISCUSSION 

In order to validate the proposed model, experimental 

Table 2.  Geometry and material properties of specimens. 

Specimens Depth Span Thickness Notch size Tensile strength Young’s modulus Fracture energy 
 (D) (S) (B) (a) (σt) (E) (Gf) 
 mm mm mm mm MPa MPa N/mm 

Beam (Bazant 1991) 38.1 95 38.1 6.35 2.86 27120 0.038 
Beam (Bazant 1991) 76.2 191 38.1 12.7 2.86 27120 0.038 
Beam (Bazant 1991) 152.4 381 38.1 25.4 2.86 27120 0.038 
Beam (Toumi 1998) 80 420 50.0 40 4.2 ± 0.25 31600± 2200 0.05 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



results of Bazant & Xu (1991) and Toumi et al. (1998) 
have been used. Bazant & Xu have tested small, me-
dium and large sized beam specimens in fatigue un-
der three point bending. The specimen details are 
tabulated in Table 2. Figure 3 and 4 show the loga-
rithmic plot of crack growth rate verses stress inten-
sity factor amplitude normalized with size independ-
ent stress intensity factor (SIF) as well as size dependent 
SIF ( )ICK . The experimental results reported by Ba-
zant & Xu (1991) are plotted together with the pro-
posed fatigue law, considering the case of constant 
amplitude loading. 

 

 
Figure 3. Logarithmic plot of crack length increment per cycle 
verses the stress intensity factor amplitude normalized with KIf. 

 

 
Figure 4. Logarithmic plot of crack length increment per cycle 
verses the stress intensity factor amplitude normalized with KIC. 

 
From this plot, the Paris’ constants C (vertical axis 
intercept) and m (slope of the straight line) may be 
determined. Table 3 shows the values of Log C and 
m obtained from the proposed model and experimen-
tally by Bazant & Xu. The agreement between the 
experimental data and the model predictions is no-
ticeably good. In Figure 5 the relative effective crack 
length a, has been plotted as a function of number of 
load cycles for the proposed fatigue law. In the ex-

perimental study, the small, medium and large 
specimens failed at N = 974, 850 and 882 cycles re-
spectively. 

 

Figure 5.  Calculated growth of relative crack length with the 
number of cycles. 

 
Table 3.  Fatigue law coefficients. 

Specimens Proposed model Experiment 
(Beam) Log C m Log C m 

Small -18.289 11.09 -16.7 11.78 
Medium -18.993 10.50 -18.2 9.97 
Large -19.594 10.90 -18.2 9.27 

 
Table 4.  Validation with experimental data. 

Stress ratios 
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(Beam)  Experiment Model 

max  0.87uF F =  -0.136 
-0.104 
-0.072 

-3.72 
-3.37 
-3.03 

-3.97 
-3.74 
-3.57 

max  0.81uF F =  -0.16 
-0.136 
-0.104 

-3.98 
-3.72 
-3.37 

-3.94 
-3.71 
-3.65 

max  0.76uF F =  -0.216 
-0.208 
-0.2 
-0.123 

-4.58 
-4.49 
-4.41 
-3.57 

-4.14 
-4.08 
-3.97 
-3.82 

max  0.70uF F =  -0.242 
-0.196 
-0.168 
-0.104 
-0.069 

-4.20 
-3.75 
-3.75 
-2.83 
-2.46 

-3.7 
-3.4 
-3.14 
-3.02 
-2.91 

 
In the proposed model, the specimens fail at N = 

880, 810 and 800 cycles respectively. A good agree-
ment is seen between the experimental results and 
the proposed fatigue model, thereby validating the 
same. 

To verify the effectiveness of the proposed model 
further, the experimental data reported by Toumi et 
al. (Toumi et al. 1998) is used and a comparative 
study is carried out. The specimen details such as 
dimensions and material properties are tabulated in 
Table 2. In the above experimental study, fatigue 
tests were performed at different values of upper 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



limit of cyclic load maxF  (0.87 uF , 0.81 uF , 0.76 uF , 
0.70 uF ), keeping the lower limit load minF  constant 
for all tests i.e. 0.23 uF , where uF  is the peak load 
during static tests. Four various loading ratios (R) 
are incorporated into Equation 16, leading to 
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The crack growth rate is plotted against the varia-

tion in the stress intensity factor for different stress 
ratios and compared with the experimental data 
points as shown in Figure 6. Table 4 shows the re-
sults of the crack growth rates with varying normal-
ized stress intensity factor. It is seen that there is 
good agreement between the experimental result and 
the proposed model.  

 

 
Figure 6. Logarithmic plots of crack growth rate verses stress 
intensity factor amplitude. 

7 CONCLUSIONS 

In this study, a fatigue crack propagation model for 
plain concrete is developed using the concept of di-
mensional analysis. An important aspect of the pro-
posed model is that it is dimensionally homogeneous 
as compared to existing empirical models. The pro-
posed model takes into account a number of parame-
ters, such as, the tensile strength, fracture toughness, 
loading ratio and most importantly the structural 
size. In most cases, the crack growth rate is not only 
a function of stress intensity range but also the mean 
stress level which is considered in the fatigue analy-
sis through stress ratio. The analytical prediction  

through the present model matches closely with ex-
perimental results for plain concrete specimens. 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 
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where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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