
Fracture Mechanics of Concrete and Concrete Structures -
Recent Advances in Fracture Mechanics of Concrete - B. H. Oh, et al.(eds)

ⓒ 2010 Korea Concrete Institute, Seoul, ISBN 978-89-5708-180-8

 

A generalized discrete strong discontinuity approach 

D. Dias-da-Costa 
ISISE, Civil Engineering Department, University of Coimbra, Coimbra, Portugal 

J. Alfaiate 
IST and ICIST, Civil Engineering Department, Instituto Superior Técnico, Lisboa, Portugal 

L.J. Sluys 
Civil Engineering and Geosciences Department, Delft University of Technology, Delft, The Netherlands 

E. Júlio 
ISISE, Civil Engineering Department, University of Coimbra, Coimbra, Portugal 

 
 
ABSTRACT: Several local embedded discontinuity formulations have already been developed, in which con-
stant strain triangles and constant jumps are adopted. However, these formulations lead to jump and traction 
discontinuity across element boundaries and stress locking effects. Herein, a new contribution to embedded 
strong discontinuities is given. A generalized discrete strong discontinuity approach (GSDA) is presented, in 
which non-homogeneous jumps can be embedded in any type of parent finite elements. A comparison to the 
generalized finite element method (GFEM) is also established. With this new formulation the additional de-
grees of freedom are global and continuous jumps and tractions across the element boundaries are always ob-
tained. The kinematics of the GSDA accurately reproduces both rigid-body motion and stretching induced by 
the opening of a discontinuity. Some simple examples are presented to illustrate the ability of this formulation 
in reproducing different opening modes. Structural examples, involving both mode-I and mixed-mode frac-
ture, are also simulated and compared to experimental results.  

1 INTRODUCTION 

The numerical modeling of fracture behavior of 
quasi-brittle materials still poses important chal-
lenges. Before a true crack is formed, microcracking 
extends over a significant area ahead of the crack 
tip, rendering the traditional assumptions of linear 
elastic fracture cumbersome. 

The cohesive crack model proposed by Hiller-
borg, Modeer et al. (1976) allowed for the simula-
tion of discrete cracking. Initially, zero-thickness in-
terface elements were applied. However, only after 
the development of finite elements with strong em-
bedded discontinuities, a more efficient modeling of 
strain localization problems could be achieved. Most 
existing formulations (Dvorkin, Cuitiño et al. 1990, 
Simo & Rifai 1990, Klisinski, Runesson et al. 1991, 
Lofti & Shing 1995, Armero & Garikipati 1996, 
Larsson & Runesson 1996, Oliver 1996, Wells & 
Sluys 2001, Oliver, Huespe et al. 2002) take advan-
tage of a static condensation, at element level, in or-
der to keep the number of degrees of freedom con-
stant. As a consequence, a discontinuous jump 
profile across element boundaries is obtained. More-
over, constant strain triangles (CST) enriched with 

constant jumps are usually applied, leading to well-
known stress locking problems (Jirásek 2000).  

In the embedded formulations introduced by Bol-
zon (2001) and Linder & Armero (2007) linear dis-
placement jumps at the discontinuity are adopted. 
However, the traditional CST elements are still used 
in the former case, whereas a local formulation is 
applied for both cases. In Dias-da-Costa, Alfaiate et 
al. (2009), a global formulation is presented, in 
which a non-homogeneous jump displacement field 
is considered across the discontinuity. These dis-
placement jumps are transmitted to the parent ele-
ment nodes by means of a rigid body motion. As a 
consequence, constant shear jumps are enforced, 
thus neglecting the stretching induced by the open-
ing of a discontinuity.  

Recently, the generalized finite element method 
(GFEM), also known as extended finite element me-
thod (XFEM), became a powerful numerical tool 
available for the simulation of discontinuities 
(Duarte & Oden 1995, Melenk & Babuska 1996, Be-
lytschko & Black 1999, Moës, Dolbow et al. 1999, 
Duarte, Babuska et al. 2000). This is a nodal en-
richment technique, in which the partition of unity 



property of the shape functions is exploited to ap-
proximate the strong discontinuity kinematics. 

In this paper, a generalized strong discontinuity 
approach (GSDA) is presented and compared to the 
GFEM method. Conversely to previous embedded 
formulations (Alfaiate, Simone et al. 2003, Dias-da-
Costa, Alfaiate et al. 2009), all available degrees of 
freedom at the discontinuity are taken into account 
in order to capture both rigid body motion and 
stretching. This formulation can be applied to any 
parent element. Moreover, the additional degrees of 
freedom are global, meaning that the discontinuity 
jumps and tractions are kept continuous across ele-
ment boundaries.  

In Section 2 the problem description is presented, 
including the variational framework (Section 2.1), 
which is the same for the GSDA and the GFEM. The 
discretization of the variational equations is per-
formed in Section 2.2. Some issues related to the 
numerical implementation are briefly reviewed in 
Section 3. The constitutive relation used in the com-
puted examples is presented in Section 4. In Sec-
tion 5.1 simple examples are computed in order to 
reveal particular aspects connected to the kinematics 
of both numerical techniques. Next, in Section 5.2, 
two structural examples are presented, one including 
mixed-mode fracture. Finally, in Section 6, the most 
relevant conclusions are presented.  

2 PROBLEM DESCRIPTION 

2.1 Common framework 

In this Section the kinematics of a strong discontinu-
ity is briefly addressed. More detail can be found 
elsewhere (see, for instance, Dias-da-Costa, Alfaiate 
et al. (2009)). 

Consider an elastic domain Ω , with boundary 
Γ , containing a discontinuity surface 

d
Γ  defining 

two subregions +

Ω  and −

Ω , according to Figure 1. 
A quasi-static loading composed by body forces, 

b , and natural boundary conditions, t , the latter 
distributed on the external boundary, 

t
Γ , are ap-

plied to the body. The essential boundary conditions 
u  distributed on the remaining part of the bound-
ary, 

u
Γ , such that 

t u
Γ ∪Γ = Γ  and 

t u
Γ ∩Γ =∅ . 

The vector n  is orthogonal to the boundary sur-
face, pointing outwards, whereas +

n  is orthogonal 
to the internal discontinuity surface, pointing in-
wards +

Ω  (see Fig. 1). 
The total displacement u  is decomposed ac-

cording to the following equation: 
 

ˆ( ) ( ) ( ),
dΓ

= +u x u x u x%H                       (1) 

 
where û  represents the regular displacement field 
and u%  is the enhanced displacement field. 

dΓ
H  is 

a function defining the jump transmission by the dis-
continuity. Here, the standard Heaviside function is 
chosen. 

The strain field is defined, under small displace-
ments hypothesis, as the symmetric part of the gra-
dient of the displacement field: 
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where (·)

s

 stands for the symmetric part of (·) and 
⊗  denotes the dyadic product.  

Both displacement and strain fields remain con-
tinuous in −

Ω  and +

Ω , since the unbounded term 
in Equation (2) vanishes in 

d

− +
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Figure 1. Domain Ω  crossed by a discontinuity surface 

d
Γ .  

 
Under quasi-static equilibrium conditions, the 

variational formulation can be cast into the follow-
ing form: 
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where ˆδu  and δu%  are, respectively, the regular 
and enhanced virtual displacements. 

Both GSDA and GFEM formulations share the same 
variational framework defined by Equation (3) and (4). 
However, the GSDA remains an element enrichment 
technique, whereas the GFEM is a nodal enrichment 
technique. Therefore, discretization is addressed sepa-
rately in the following subsection. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  

 

J•∇=
∂

∂
−

t

w
                              (2) 

 
The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



2.2 Discretization 

In this section the discretized equations for both 
formulations are presented.  

2.2.1 GSDA 

The displacement field within each enriched element 
domain, e

Ω , can be cast in the following form: 
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where e

N  contains the element shape functions, 
e

a  are the total nodal displacements, e

a%  are the 
enhanced nodal displacements, I  is a (2 2 )n n×  
identity matrix and 

d

e

Γ
H  is a (2 2 )n n×  diagonal 

matrix composed by successively evaluating the 
Heaviside function at each of the 2n  degrees of 
freedom of the finite element. e

w
N  is a ( )

w
d n× , 

( 2d =  in 2D and 3d =  in 3D), matrix containing 
the shape functions used to approximate the jumps 

� �
e

u , which are reflected by degrees of freedom e

w  
measured at the 

w
n  additional nodes, and ( )s x  is 

the coordinate along the discontinuity defined by 
Figure 2. 

w
n  is related to the degree used to ap-

proximate the jumps: two additional nodes along 

d
Γ  are used for a linear function (nodes i  and j  
from Figure 2). 
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Figure 2. Domain e

Ω  crossed by a discontinuity surface e

d
Γ .  

 
The enhanced nodal displacements are obtained from: 
 

,

e ek e

w
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where ek

w
M  is a matrix transmitting the jumps to 

the nodes of the enriched finite element. This matrix 
is formed by stacking, in rows, a matrix e

w
M  evalu-

ated at each node of the element. e

w
M  is decom-

posed into two matrices containing: (i) a linear shear 
slide, e

w
s

M ; and (2) a rigid body rotation and trans-
lation normal to the discontinuity, e

w
n

M : 
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In Equation (9) and (10), sin( )sa α= , cos( )ca α= , 

2 sin(2 )s a α= , 2 cos(2 )c a α= , and: 
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( )1 2
,=x x x  is the global position of any material 

point inside the finite element, ( )1 2
,

i i i
=x x x  is the 

global position of the tip i , e

d
l  is the length of the 

discontinuity e

d
Γ  measured along the local frame 

s  and α  is the discontinuity angle (see Fig. 2). 
The strain field is approximated using the stan-

dard strain-displacement matrix, e

B : 
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The incremental stress field and incremental trac-

tion at the discontinuity are given by: 
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where e

T  is the discontinuity constitutive matrix. 
Taking into account Equation (5) into (14), the 

descritization of Equation (3) and (4) leads to the 
following system of equations: 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



The additional degrees of freedom are considered 
global; as a consequence, both jump and traction 
continuity are obtained across elements. Traction 
continuity is enforced in the weak sense. Therefore, 
the symmetry is kept if the constitutive material law 
is symmetric.  

2.2.2 GFEM 

The derivation of the discretized equations for the 
GFEM is well known and therefore omitted. The 
corresponding system of equations is: 
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3 NUMERICAL IMPLEMENTATION 

3.1 Crack propagation technique 

A discontinuity is considered straight, always cross-
ing a complete parent element. Under crack propa-
gation, additional degrees of freedom must be added 
to the GSDA and the GFEM. Only one discontinuity 
is allowed at each parent element, although generali-
zations can be made for more than one (Daux, Moës 
et al. (2000); Dias-da-Costa, Alfaiate et al. (2009)). 

The direction of crack propagation is evaluated 
applying Rankine criterion to an averaged stress ten-
sor. A Gaussian weight function, presented in Wells 
& Sluys (2001) is used. This function depends on 
the distance between integration point and disconti-
nuity tip and also on a significant distance around 
the tip, designated interaction radius. Different sug-
gestions for the value for the radius of influence can 
be found (Wells & Sluys (2001); Simone (2003)). 
Here the value is defined as circa 1%  of Hiller-
borg’s characteristic length, 2

/
ch F t
l G E f= . 

The stress field measured in the bulk is not lo-
cally in equilibrium with the traction field measured 
in the discontinuity. This is a direct consequence of 
the weak traction continuity condition adopted in 
Equation (4). Consequently, at crack initiation, in 
order to prevent the traction field at the tip to lie out-
side the limit surface, a conservative procedure is 
adopted: the discontinuities are introduced in an ear-

lier stage, in which the stress field in the bulk lies in-
side the Rankine limit surface. 

3.2 Numerical integration 

In order to solve for the equilibrium equation pre-
sented in Section 2.2, several numerical integrations 
need to be performed.  

Regarding the integration of the discontinuity 
stiffness, e

d
K , a two point Newton-Cotes/Lobatto 

scheme is applied in the GSDA, in order to avoid 
spurious oscillations (Dias-da-Costa, Alfaiate et al. 
(2009)). Consequently, these integration points co-
incide with the additional nodes located at the inter-
section of the discontinuity with the element edges 
(Fig. 2).  

With respect to the bulk stiffness, the subregion 
e+

Ω  is divided in triangles defined by the centroid 
of e+

Ω  and each edge surrounding e+

Ω . These tri-
angular areas are afterwards integrated by a mid-
point rule with three points. All remaining integrals, 
spanning over e

Ω , are computed by the usual Gaus-
sian rule. 

4 CONSTITUTIVE RELATIONS 

In all examples presented in the following sections, 
the bulk is considered linear elastic. In the follow-
ing, a brief review of the discontinuity traction-
separation law is presented. A more comprehensive 
description, regarding plastic and damage models, 
can be found in Alfaiate, Wells et al. (2002); Dias-
da-Costa, Alfaiate et al. (2009).  

4.1 Isotropic damage law 

The constitutive law for the isotropic damage law is 
given by: 
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where d  is a scalar damage variable such that 
0 1d≤ ≤  and 

el
T  is the initial elastic constitutive 

tensor. 
The evolution of damage is written as: 
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where 

0t
f  is the initial tensile strength, 

F
G  is the 

fracture energy, and κ  is a scalar equivalent jump 
damage parameter depending on the maximum ever 
reached positive normal jump component, 

n
w +

< > , 
and shear jump component, | |

s
w : 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 

 

( ) ( )
( )

( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
∞

+

−
∞

−=

11
10

,
1

                            

1
10

1
1,

1
,,

h
cc

g
e

sc
K

h
cc

g
e

sc
G

sc
h

e
w

αα

αα

αα

αααα

 (4) 

 
where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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β , which is always non-negative, defines the 

contribution of the shear jump component to the 
equivalent jump parameter. At the onset of localization, 

0
s
w =  and 0

s
t = , whereas 

0n
w κ=  and 

0n t
t f= . 

A load function, in the displacement jump space, 
is defined as: 
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The incremental constitutive relation can be de-

rived from differentiation of Eq. (19): 
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where el

t  is the elastic traction vector and: 
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Finally, Eq. (23) can be cast into the following 

form: 
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If unloading takes place, the rate of damage is ze-

ro and the following relation is recovered: 
 

(1 ) .eld= −t T w&
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5 NUMERICAL EXAMPLES 

Some examples are computed to compare the per-
formance of the GSDA and the GFEM. First, one 
element examples are presented for two different sit-
uations: i) a discontinuity significantly softer than 
the bulk; and ii) vice-versa. Next, an example with 
stretching is also shown. Finally, two structural ex-
amples are computed, the last of them including 
mixed-mode fracture. Plane stress state is assumed. 

5.1 Simple examples 

5.1.1 Soft discontinuity with rigid bulk vs. rigid dis-
continuity with soft bulk 

A horizontal discontinuity is placed at half the 
height of the parent element 3(1 1 1 mm )× × . A unit 
load is either vertically or horizontally applied at the 
top left node, to induce mode-I and mode-II crack 
opening, respectively. A linear elastic constitutive 
law is adopted for the discontinuity: 
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Two situations are simulated: i) a soft discontinu-

ity ( 3
1 N/mm

n
k =  and 5 3

10 N/mm
s

k = , for mode-I; 
5 3

10 N/mm
n

k =  and 3
1 N/mm

s
k = , for mode-II) with 

stiffer bulk ( 3
10  MPaE = ; 0ν = ); and ii) a stiffer 

discontinuity ( 3 3
10 N/mm

n
k =  and 5 3

10 N/mm
s

k = , 
for mode-I; 5 3

10 N/mm
n

k =  and 3 3
10 N/mm

s
k = , 

for mode-II) with a softer bulk ( 1 MPaE = ; 0ν = ). 
The deformed meshes are shown in Figure 3 and 

Figure 4. For the discontinuity much softer than the 
bulk, the results from both formulations are the 
same; however, for the soft bulk the GFEM gives 
rise to a more deformed element due to a better re-
finement of the bulk. This is due to the fact that, in 
the GSDA, the enrichment concerns exclusively the 
discontinuity.  

5.1.2 Stretching opening mode 
In this example, a finite element 3(2 1 1 mm )× ×  
with a horizontal discontinuity placed at half of the 
height of the parent element is loaded with two op-
posite horizontal loads, 13.49 NP = , at both top 
nodes. The following constitutive parameters are 
applied: 30 MPaE = ; 0ν = ; and shear stiffness 

3
10 N/mm

s
k = . 

 

  
 (a) (b) 

Figure 3. Mode-I deformed mesh (reduced 10× ) for the 
GSDA (continuous) and the GFEM (dashed): (a) soft disconti-
nuity; (b) soft bulk. 

 

  
 (a) (b) 

Figure 4. Mode-II deformed mesh (reduced 10× ) for the 
GSDA (continuous) and the GFEM (dashed): (a) soft disconti-
nuity; (b) soft bulk. 

 
The overall displacement obtained with the GSDA 

is 15% smaller than with the GFEM – see Figure 
5(a). This difference is again caused due to the 
smaller degree of discretization of the bulk obtained 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
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= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



with the GSDA. For instance, for the more refined 
mesh represented in Figure 5(b), both formulations 
give rise to practically coincident results. 

 

  
 (a) (b) 

Figure 5. Deformed mesh (reduced 10× ) for the GSDA (con-
tinuous) and the GFEM (dashed): (a) one finite element; (b) 
distorted non-symmetric mesh. 

5.2 Structural examples 

5.2.1 Prenotched gravity dam model 
The first structural example concerns an experimen-
tal test performed by Barpi & Valente (2000) (see 
Fig. 6). 

Loading is performed in two stages: first dead-
weight is applied; afterwards, the water pressure in 
front of the dam is gradually increased. The arc-
length method is used to enforce a monotonic in-
crease of the relative crack mouth opening dis-
placement (CMOD). 

The material parameters of the bulk are the fol-
lowing: dead-weight 32400 kg/mρ = ; Young’s 
modulus 35.7 GPaE = ; Poisson’s ratio 0.1ν = ; 
tensile strength 3.6 MPa

t
f = ; and fracture energy 

0.184 N/mm
F
G = . A discontinuity is supposed to 
open in mode-I of fracture, following an exponential 
decaying law. A gradual decrease of the elastic shear 
stiffness with increasing crack opening is enforced.  

The mesh is composed of 1848  bilinear finite 
elements, with a refinement near the notch in order 
to better evaluate the direction of crack propagation 
(see Fig. 6).  
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Figure 6. Prenotched gravity dam model: structural scheme 
(thickness 30 cm), including loading, boundary conditions and 
adopted mesh (all dimensions in cm).  

Results are represented in Figure 7 to Figure 9. A 
major conclusion can be immediately drawn: both 
GSDA and GFEM give similar results. Furthermore, 
regarding the load vs. CMOD curves (Fig. 7), the 
numerical model appears to be steeper than the ex-
perimental curve. This is related to the mode-I con-
stitutive relation adopted for the discontinuity. Con-
versely to the numerical simulation from Barpi & 
Valente (2000), the initial elastic stiffness is accu-
rately simulated. Moreover, the obtained crack path, 
represented in Figure 8, closely follows the experi-
mental envelope. Some differences between formu-
lations appear only in the later stages of propagation, 
where the coarser mesh is clearly insufficient to eva-
luate the direction of crack propagation. 

The deformed mesh obtained with both formula-
tions is represented in Figure 9, when the CMOD is 
0.35 mm . 

 

GFEM

100

200

300

400

500

600

700

800

900

0 0.1 0.2 0.3 0.4 0.5

L
o
a
d

(k
N

)

CMOD (mm)

key:
Experimental

Numerical results (Barpi)

GSDA

0

 
Figure 7. Prenotched gravity dam model: load vs. CMOD. 
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Figure 8. Prenotched gravity dam model: crack path. 

 

   
 (a) (b) 

Figure 9. Prenotched gravity dam model: deformed mesh 
(magnified 500× ) when CMOD is 0.35 mm for: (a) GSDA; 
and (b) GFEM. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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assume that the evaporable water is a function of 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 

 

( ) ( )
( )

( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
∞

+

−
∞

−=

11
10

,
1

                            

1
10

1
1,

1
,,

h
cc

g
e

sc
K

h
cc

g
e

sc
G

sc
h

e
w

αα

αα

αα

αααα

 (4) 

 
where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



5.2.2 Four-point shear test 
A mixed-mode loading benchmark, experimentally 
tested by Arrea & Ingraffea (1982), is numerically 
simulated. The details regarding the specimen ge-
ometry, mixed-mode loading and boundary condi-
tions are represented in Figure 10. 

The material properties adopted by different au-
thors present significant differences, especially con-
cerning the cohesive fracture properties which were 
not experimentally assessed (Arrea & Ingraffea 
(1982); Cendón, Gálvez et al. (2000)). The follow-
ing constitutive parameters are adopted: Young’s 
modulus 24.8 GPaE = ; Poisson’s ratio 0.18ν = ; 
tensile strength 3.8 MPa

t
f = ; and fracture energy 

0.125 N/mm
F
G = . The isotropic damage law pre-
sented in Section 4.1 is applied with 0.7β =  to de-
scribe the mixed-mode behavior of the discontinuity 
just after being inserted.  

The mesh is composed of 1236  bilinear finite 
elements (see Fig. 10). 
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Figure 10. Four-point shear test: structural scheme (thickness 
152 mm), including loading, boundary conditions and adopted 
mesh (all dimensions in mm).  

 
The arc-length method is used to enforce a mono-

tonic increase of the relative crack mouth sliding 
displacement (CMSD). 

The numerical results are represented in Figure 
11 to Figure 13. Again both GSDA and GFEM pre-
sent similar results concerning both loading vs. 
CMSD curves and crack path. The obtained load vs. 
CMOD curves (Fig. 11) are within the experimental 
envelope. In relation to the crack path (Fig. 12) the 
numerical results inflect slightly inwards with re-
spect to the experimental envelope.  

The deformed mesh is represented in Figure 13, 
when the CMSD is 0.08 mm  with the correspond-
ing principal stress map.  
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Figure 11. Four-point shear test: load vs. CMSD. 
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Figure 12. Four-point shear test: crack path. 

 

 
Figure 13. Four-point shear test: maximum principle stress map 
in the deformed mesh (magnified 200 × ) when CMSD is 
0.08 mm for GFEM. 

6 CONCLUSIONS 

In this paper, a generalized strong embedded discon-
tinuity approach, GSDA, has been presented. This is 
a new embedded discontinuity technique in which 
the additional global degrees of freedom are located 
at the discontinuity, which is explicitly inserted into 
the parent element. For problems in which boundary 
conditions must be explicitly introduced at the dis-
continuity, such as moisture, temperature or crack 
repairing with epoxy, benefit can be taken from such 
implementation. These additional degrees of free-
dom are capable of describing both the rigid body 
motion and the stretching induced by a discontinuity 
opening. Additionally, both traction and jump conti-
nuity across element boundaries are obtained.  

Comparison with the GFEM method was estab-
lished. Although different in nature, they have a 
common variational framework. The GFEM is based 
on the partition of unity concept, meaning that the 
additional degrees of freedom are introduced at the 
nodes to reproduce the kinematics of complex con-
tinua; as a consequence, the GFEM provides an in-
herent better refinement of the bulk, which could be 
observed using simple examples. Nevertheless, for 
quasi-brittle materials, in which case the discontinu-
ity is considerably softer than the bulk, this better 
bulk refinement is found to be unimportant. Indeed, 
it was found that both methods produce identical re-
sults in the analysis of two different structural ex-
amples: i) a prenotched gravity dam under mode-I 
fracture and ii) a four point bending beam subjected 
to mixed-mode fracture. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  

 

J•∇=
∂

∂
−

t

w
                              (2) 

 
The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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