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ABSTRACT: The mechanical behaviour of joints plays a key role in concrete dam engineering since the joint
is the weakest point in the structure and therefore the evolutionary crack process occurring along this line
determines the global load bearing capacity. The reference volume involved in the above mentioned process is so
large that it cannot be tested in a laboratory: a numerical model is needed. The use of the asymptotic expansions
proposed by Karihaloo and Xiao 2008 at the tip of a crack with normal cohesion and Coulomb friction can
overcome the numerical difficulties that appear in large scale problems when the Newton-Raphson procedure is
applied to a set of equilibrium equations based on ordinary shape functions (Standard Finite Element Method).
In this way it is possible to analyse problems with friction and crack propagation under the constant load induced
by hydromechanical coupling. For each position of the fictitious crack tip, the condition K1 = K2 = 0 allows
us to obtain the external load level and the tangential stress at the tip. If the joint strength is larger than the value
obtained, the solution is acceptable, because the tensile strength is assumed negligible and the condition K1 = 0
is sufficient to cause the crack growth. Otherwise the load level obtained can be considered as an overestimation
of the critical value and a special form of contact problem has to be solved along the fictitious process zone. For
the boundary condition analysed (ICOLD benchmark on gravity dam model), after an initial increasing phase,
the water lag remains almost constant and the maximum value of load carrying capacity is achieved when the
water lag reaches its constant value.

1 INTRODUCTION
The mechanical behaviour of joints plays a key role in
concrete dam engineering since the joint is the weak-
est point in the structure and therefore the evolution-
ary crack process occurring along this line determines
the global load bearing capacity. In the scientific liter-
ature two problems are discussed:

• the problem of sliding along a pre-existing com-
pressed discontinuity (see, among others, Gens,
Carol, and Alonso 1990),

• the problem of crack initiation and propagation
along an undamaged interface (see Carol, Prat,
and Lopez 1997, Červenka, Kishen, and Saouma
1998, Barpi and Valente 2008).

The latter problem is discussed below in the frame-
work of the cohesive crack models, introduced by
Barenblatt and Dugdale for elastoplastic materials,
and by Hillerborg et al. for quasi-brittle materials. In
this model, the nonlinear fracture process zone (due
to degradation mechanisms such as plastic micro-
voiding or micro-cracking) in front of the actual crack

tip is lumped into a discrete line (two-dimensional)
or plane (three-dimensional) and is represented by
a traction-separation law across this line or plane.
When the tangential components of the tractions are
present the solution can lose uniqueness. Therefore
numerical difficulties occur if the Newton-Raphson
procedure is applied to a set of equilibrium equations
based on ordinary shape functions (Standard Finite
Element Method). In order to overcome these diffi-
culties Strouboulis, Copps, and Babuska 2001 sug-
gest constructing an approximation which employs
knowledge about the character of the solution (Gen-
eralized Finite Element Method). In this direction we
take advantage from the work of Karihaloo and Xiao
2008 on the asymptotic fields at the tip of a cohesive
crack. In this model frictional forces operate when the
crack faces are open. Therefore these forces are differ-
ent from those operating in a contact problem. In this
context Karihaloo and Xiao 2008 obtained asymptotic
expansions at a cohesive crack tip analogous to the
Williams (1957) expansions at a traction-free crack
tip for any traction-separation law that can be ex-
pressed in a special polynomial form.
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2 POLYNOMIAL COHESIVE LAW FOR QUASI-
BRITTLE MATERIALS

Figure 1. Stresses near the crack tip.

In order to obtain the separable asymptotic field at
a cohesive crack tip (in terms of r and θ functions, see
Fig. 1) in quasi-brittle materials, Karihaloo and Xiao
2007 reformulate the softening law into the following
polynomial form:
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where σy and ft are the stress normal to the cohe-
sive crack face and the uniaxial tensile strength, re-
spectively; w and wc are the opening displacement
of the cohesive crack faces and the critical displace-
ment at the real crack tip; αi are fitting parameters.
Equation 1 can represent a wide variety of softening
laws. For example, Karihaloo and Xiao 2007 showed
that the experimental results of Cornelissen, Hordijk,
and Reinhardt 1986 for normal concrete can be fitted
very well by Eq. 1 with:α1 = −0.872, α2 = −16.729,
α3 = 67.818, α4 = −110.462, α5 = 83.158 (see Fig.
2). The above mentioned shape coefficients are used
in the present work.

3 ASYMPTOTIC FIELDS AT THE TIP OF A
CRACK WITH NORMAL COHESION AND
COULOMB FRICTION

The mathematical formulation follows closely that
used by Karihaloo and Xiao 2008, so only a brief de-
scription will be given here. Muskhelishvili (1953)
showed that, for plane problems, stresses and dis-
placements in the Cartesian coordinate system (see
e.g. Fig. 1) can be expressed in terms of two ana-
lytic functions φ(z) and χ(z) of the complex variable
z = reiθ

σx + σy = 2[φ′(z) + φ′(z)] (2)

σy − σx + 2iτxy = 2[zφ′′(z) + χ′′(z)] (3)

2µ(u + iv) = kφ(z)− zφ′(z)− χ′(z) (4)
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Figure 2. Non dimensional opening (w/wc) vs. non dimen-
sional stress (σ/σc).

where a prime denotes differentiation with respect
to z and an overbar complex conjugate. In Eq. 4,
µ = E/[2(1 + ν)] is the shear modulus; the Kolosov
constant is κ = 3 − 4ν for plane strain and κ = (3 −
ν)/(1+ ν) for plane stress; E and ν are Young’s mod-
ulus and Poisson’s ratio, respectively.

For a general mixed mode I+II problem, the two
analytic functions φ(z) and χ(z) can be chosen as se-
ries of complex eigenvalue Goursat functions (Sih and
Liebowitz 1968)

φ(z) =
∑
n=0

Anzλn =
∑
n=0

Anrλneiλnθ

χ(z) =
∑
n=0

Bnzλn+1 =
∑
n=0

Anrλn+1ei(λn+1)θ (5)

where the complex coefficients are An = a1n + ia2n

and Bn = b1n + ib2n . The eigenvalues λn and coeffi-
cients a1n, a2n, b1n and b2n are real.

Substituting complex functions 5 into 2, 3 and 4,
the complete series expansions of the displacements
and stresses near the tip of the crack can be written:

2µu =
∑
n=0

rλn

{
k(a1n cosλnθ−

a2n sinλnθ) + λn[−a1n cos(λn − 2)θ+

a2n sin(λn − 2)θ + (λn + 1)(−b1n cosλnθ+

b2n sinλnθ)
}

(6)
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



2µv =
∑
n=0

rλn

{
k(a1n sinλnθ−

a2n cosλnθ) + λn[a1n sin(λn − 1)θ+

a2n cos(λn − 2)θ + (λn + 1)(b1n sinλnθ+

b2n cosλnθ)
}

(7)

σx =
∑
n=0

rλn−1
{

2λn[a1n cos(λn − 1)θ

− a2n sin(λn − 1)θ]− λn(λn − 1)[a1n cos(λn − 3)θ

− a2n sin(λn − 3)θ]− (λn + 1)λn[b1n cos(λn − 1)θ

− b2n sin(λn − 1)θ]
}

(8)

σy =
∑
n=0

rλn−1
{

2λn[a1n cos(λn − 1)θ

− a2n sin(λn − 1)θ] + λn(λn − 1)[a1n cos(λn − 3)θ

− a2n sin(λn − 3)θ] + (λn + 1)λn[b1n cos(λn − 1)θ

− b2n sin(λn − 1)θ]
}

(9)

τxy =
∑
n=0

rλn−1

{
λn(λn − 1)[a1n sin(λn − 3)θ

− a2n cos(λn−3)θ] + (λn + 1)λn[b1n sin(λn − 1)θ

− b2n cos(λn−1)θ]
}

(10)
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∣∣∣
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µ
[(k + λn)a1n + (λn + 1)b1n] sinλnπ (11)

δ = u
∣∣∣
θ=π

− u
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θ=−π

=

∑
n=0

rλn

µ
[(λn − k)a2n + (λn + 1)b2n] sinλnπ (12)

The imposition of continuity conditions on normal
stress component of Eq. 9 (σy|θ=π = σy|θ=−π) along
the cohesive zone gives:

(a2n + b2n) sin(λn−1)π = 0 (13)

The imposition of continuity conditions on tangen-
tial stress component of Eq. 10 (τxy|θ=π = τxy|θ=−π)
along the cohesive zone gives:

[(λn − 1)a1n + (λn+1)b1n] sin(λn − 1)π = 0 (14)

Equations 13 and 14 are satisfied for sin(λn − 1)π = 0
or for b2n = −a2n. In other words the asymptotic so-
lutions can be collected in two classes. The first class
is characterized by integer eigenvalues:

λn = n + 1, n = 0,1,2 . . . , w = 0, δ = 0 (15)

the second class is characterized by the remaining
cases (non integer eigenvalues):

b2n = −a2n, b1n = −λn − 1

λn + 1
a1n, w �= 0, δ �= 0

(16)
The imposition of the Coulombian friction condition
(τxy|θ=π = −µf σy|θ=π) along the cohesive zone, for
the first class of solutions gives:

λn = n + 1

na2n + (n + 2)b2n = −µf (n + 2)(a1n + b1n)

n = 0,1,2 . . . (17)

and for the second class of solutions gives:

(µfa1n − a2n) cos(λn − 1)π = 0 (18)

Since both factors in Eq. 18 may vanish indepen-
dently of each other, it appears that, for the crack with
normal cohesion and Coulombian friction, the eigen-
values and asymptotic fields are not unique. Addi-
tional assumptions have to be made to ensure unique-
ness. Assuming that µfa1n − a2n �= 0, Eq. 18 gives:

cos(λn − 1)π = 0, λn =
2n + 3

2
, n = 0,1,2 . . .

(19)
This assumption does not lead to any loss of general-
ity. Now it is possible to complete the expressions of
the asymptotic fields.

In the case of integer eigenvalues, substituting
Eq. 17 in 9 gives:

σy|θ=±π = −τxy|θ=±π

µf

=

∑
n=1

(n + 2)(n + 1)rn(a1n b1n) cos(nπ) (20)
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 
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where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



In the case of non-integer eigenvalues, substituting
Eqs. 16 and 19 in 11 and 12 gives:

w =
∑
n=0

r
2n+3

2

µ

[(
κ +

2n + 3

2

)
a1n +

2n + 5

2
b1n

]

sin
2n + 3

2
π (21)

δ =
∑
n=0

r
2n+3

2

µ

[(
2n + 3

2
− κ

)
a2n +

2n + 5

2
b2n

]

sin
2n + 3

2
π (22)

In Eq. 19 n =−1 corresponds to the singular terms,
which are excluded a priori (K1 = K2 = 0).

4 THE ITERATIVE SOLUTION PROCEDURE
For each position of the fictitious crack tip (shortening
FCT) the following iterative procedure is applied:

[
w
δ

]i+1

= f

([
σy

τxy

]i )

[
σy

τxy

]i+1

= g

([
w
δ

]i+1 )
i = 0,1,2 . . . (23)

Since the material outside the fracture process zone
(shortening FPZ) is linear, it is possible to compute
the external load multiplier (λ) and the tangential
stress at the FCT (τxy,FCT ) by imposing that the stress
field is not singular (stress intensity factors K1 =
K2 = 0). All these linear constraints are included in
the operator f .

Since w,δ,σy,τxy are compatible with the asymp-
totic solution, operator g includes the constraints de-
scribed in Karihaloo and Xiao 2008 and not repeated
here.

At the first iteration (i = 0) w = δ = 0 is assumed
along the FPZ. According to this approach λ and
τxy,FCT are not defined a priori but are obtained from
the analysis related to a pre-defined position of the
FCT. If τxy,FCT is less than or equal to the local crit-
ical value, the solution obtained can be accepted. On
the contary, if τxy,FCT exceeds the local critical value,
the associated load level can be seen as an overestima-
tion of the real critical value which remains unknown.
Of course it is possible to reduce the load level but
in that case K1 becomes negative, a contact problem
arises along the FPZ and the dilatancy condition has

to be imposed. This special form of contact problem
is beyond the scope of the present work.

In the well established literature on mechanical be-
haviour of concrete joints (see Červenka, Kishen, and
Saouma 1998), softening depends only on weff =√

w2 + δ2. In the asymptotic expansion used, soften-
ing depends only on w. Therefore, during the iterative
procedure, wc changes as follows:

wi+1
c =

√
w2

eff,c − (δi)2 (24)

5 NUMERICAL EXAMPLE

Figure 3. Failure criterion.

As an example of application, the benchmark prob-
lem proposed in 1999 by the International Commis-
sion On Large Dams ICOLD 1999 was analysed (dam
height 80m, base 60m, see Fig. 4).

For simplicity the same value of Young’s modulus
(E = 32.5 GPa) and Poisson’s ratio (ν = 0.125) was
assumed. Figure 3 shows the Mohr envelope of peak
and residual strength for the joint (cohesion=0.7MPa,
Φ = 30o). The stress σx is positive (tension) along
the lower edge of the crack. Figure 3 shows its con-
tribution to the achievement of the critical condition.
As the crack grows, the value of σx at the FCT (also
called T-stress) reduces. For conservative reasons, the
tensile strength of the joint and the related fracture en-
ergy are assumed as negligible. In case of linear soft-
ening the ICOLD benchmark suggests the assumption
of a critical value of the crack sliding displacement
equal to δc = 1 mm. Since the shape of the soften-
ing law assumed in the present paper is based on the
results of Cornelissen, Hordijk, and Reinhardt 1986,
the previous value was increased to δc=2.56 mm. This
choice is motivated by keeping constant the fracture
energy GII

F in the case w = 0. Since the crack is open,
beyond this value no stress transfer occurs.
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  
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reaction and SF content. This sorption isotherm 
reads 

 

( ) ( )
( )

( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
∞

+

−
∞

−=

11
10

,
1

                            

1
10

1
1,

1
,,

h
cc

g
e

sc
K

h
cc

g
e

sc
G

sc
h

e
w

αα

αα

αα

αααα

 (4) 

 
where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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Figure 4. Gravity dam proposed as benchmark by ICOLD
(1999).

5.1 Water lag
The well established literature on water driven frac-
ture (see Desroches, Detournay, Lenoach, Papanasta-
siou, Pearson, Thiercelin, and Cheng 1994) assume
that the water penetrates into the crack but does not
reach the FCT. The fraction of FPZ not reached by
the water is called water lag. According to the ex-
perimental results of Reich, Brühwiler, Slowik, and
Saouma 1994, it is assumed that the water penetrates
into the FPZ up to the conventional knee point of
the softening law (w > weff,c × 2/9 = 2.56× 2/9 =
0.569 mm.) At the points where the water penetrates,
the pressure is the same as in the reservoir at the same
depth. The concrete and the rock are assumed to be
impervious. The asymptotic expansion used is based
on the assumption τxy|θ=π = −µfσy|θ=π therefore it
can be applied only in the region not reached by the
water. Figure 5 shows the evolution of the water lag
as a function of the FCT position.

5.2 Loading conditions
The dam is analysed under self-weight, reservoir fill-
ing and imminent failure flood loading conditions. In
the numerical analysis the role of external load mul-
tiplier was played by the water level above the dam
crest also called overtopping water heigth (shortening
hovt = hiff − hc, see Fig. 4). Under the conservative
assumptions previously described related to the mate-
rial properties, the crack starts before the water level
reaches the dam crest (hovt < 0).

Figure 6 shows the evolution of (τ/cohesion) at the
FCT as a function of the FCT position. Based on the
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Figure 5. Water lag vs. FCT position.

foregoing discussion, we can conclude that the asso-
ciated load level hovt shown in Fig. 7 is just an over-
estimation of the real level. This model behaviour is
due to the low value of cohesion suggested by the
benchmark. For higher values of cohesion the solu-
tion shown in Fig. 8 and 7 is completely acceptable.
Figure 7 gives the maximum value of hovt which is
also the maximum load carrying capacity of the dam.
Figure 8 shows the evolution of the horizontal crest
displacement as a function of the FCT position and
Fig. 9 the deformed mesh along the joint.
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Figure 6. Tangential stress ratio τxy/cohesion at FCT vs.
FCT position.
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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fill all pores (both capillary pores and gel pores), one 
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The material parameters k

c
vg and k
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vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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Figure 7. Overtopping height hovt vs. FCT position.
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Figure 8. Horizontal crest displacement vs. FCT position.

Figure 9. Deformed mesh.

6 CONCLUSIONS
• The reference volume involved in the fracture

process of a dam joint is so large that it cannot
be tested in a laboratory: a numerical model is
needed.

• The use of the asymptotic expansions proposed
by Karihaloo and Xiao 2008 at the tip of a
crack with normal cohesion and Coulomb fric-
tion can overcome the numerical difficulties that
appear in large scale problems when the Newton-
Raphson procedure is applied to a set of equi-
librium equations based on ordinary shape func-
tions (Standard Finite Element Method).

• In this way it is possible to analyse problems
with friction and crack propagation under the
constant load induced by hydromechanical cou-
pling.

• In the analysis of the dam-foundation joint pene-
trated by the water, for each position of the FCT,
the condition K1=K2=0 allows us to obtain the
external load level and the tangential stress at
the FCT. If the joint strength is larger than the
value obtained, the solution is acceptable, be-
cause the tensile strength is assumed negligible
and the condition K1 = 0 is sufficient to cause
the crack growth. Otherwise the load level ob-
tained can be considered as an overestimation of
the critical value and a special form of contact
problem have to be solved along the FPZ.

• For the boundary condition analysed, after an
initial increasing phase, the water lag remains al-
most constant.

• For the boundary condition analysed, the max-
imun value of load carrying capacity is achieved
when the water lag reaches its constant value.
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  
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isotherm” if measured with increasing relativity 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
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The material parameters k
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vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



Cornelissen, H., D. Hordijk, and H. Reinhardt (1986). Exper-
imental determination of crack softening characteristics
of normal and lightweight concrete. Heron 31, 45–56.

Desroches, J., E. Detournay, B. Lenoach, P. Papanastasiou,
J. Pearson, M. Thiercelin, and A. Cheng (1994). The
crack tip region in hydraulic fracture. Proceedings of the
Royal Society of London A 447, 39–48.

Gens, A., I. Carol, and E. Alonso (1990). A constitutive
model for rock joints, formulation and numerical imple-
mentation. Computers and Geotechnics 9, 3–20.

ICOLD (1999). Theme A2: Imminent failure flood for a
concrete gravity dam. In Fifth International Benchmark
Workshop on Numerical Analysis of Dams, Denver (CO).

Karihaloo, B. and Q. Xiao (2007). Accurate simulation of
frictionless and frictional cohesive crack growth in quasi-
brittle materials using xfem. In A. Carpinteri, P. Gam-
barova, G. Ferro, and G. Plizzari (Eds.), Sixth Inter-
national Conference on Fracture Mechanics of Con-
crete and Concrete Structures (FRAMCOS6), pp. 99–
110. Taylor and Francis (London).

Karihaloo, B. and Q. Xiao (2008). Asymptotic fields at the
tip of a cohesive crack. International Journal of Frac-
ture 150, 55–74.
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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(6)

 
 
The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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