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ABSTRACT: A numerical model based on a three dimensional Discrete Element Method (DEM) has been 
used to study the behavior of cohesive granular geomaterials such as concrete under a high confining pressure 
(up to 650 MPa). At this range of pressures, irreversible compaction of the material occurs and needs to be 
considered. Within the discontinuous nature of the model, a local constitutive law has been developed to re-
produce this phenomenon quantitatively. The computational implementation has been carried out in the Dis-
crete Element and open source code YADE (Kozicki & Donze 2008) 

1 INTRODUCTION  

Concrete is used for sensitive infrastructures like nu-
clear power reactors. However, concrete exhibits an 
intrinsically complex behavior (Gabet et al. 2006) 
under extreme loading, such as explosions or ballis-
tics impacts (Shiu et al. 2008) which is difficult to 
reproduce experimentally. To predict its response 
under dynamic loading, its experimental static be-
havior under very high confinement must first be 
characterized. Since it will generate different dam-
age modes which strongly depend on the stress state 
and the loading path, brittle damage and irreversible 
strain such as compaction must be well understood. 

Extensive micro-cracking and macro-cracking are 
difficult to characterize in terms of a continuum formu-
lation, this is why it has been chosen to use a discrete 
model (Cundall & Hart 1992, Donzé & Magnier 1995) 
to represent the material as an assemblage of inde-
pendent elements, interacting with one another. It di-
rectly takes into consideration the physical mecha-
nisms and the influence of the concrete aggregate 
structure, offering an interesting alternative tool to re-
produce a fracturing process in concrete. 

The purpose of the present study is therefore to 
set up the formulation of the local constitutive laws 
for a 3D discrete element model in order to represent 
the behavior of concrete at high confining pressure. 
Based on the simulation of experimental tests (Gabet 
et al. 2008, Vu et al. 2009) performed previously on 
a low-strength plain concrete, (using the large capac-
ity triaxial “GIGA” press, stress levels above 1 GPa 
with homogeneous, static and well controlled load-
ing paths could be reached), the numerical model 
was first calibrated from both, tri-axial tests carried 
out at low confining pressure and hydrostatic test. 
Once the model’s parameters have been obtained, 

the model was used to predict the response of a con-
crete sample for tri-axial tests at different levels of 
confinement (Tran et al. 2009).  

2 DISCRETE ELEMENT MODEL  

There are different Discrete Element Methods ap-
plied in the Geotechnical field, and we will use in 
this work the classical Discrete (or Distinct) Element 
Method (DEM) formulation pioneered by Cundall & 
Strack (1979). Basically, the algorithm involves two 
steps. In the first one, interaction forces are com-
puted when elements slightly interpenetrate each 
other: this force-displacement formulation is often 
referred to as a Smooth contact method or also as the 
Force-Displacement method. In the second step, 
Newton second law is used to determine, for each 
Discrete Element (DE), the resulting acceleration, 
which is then time integrated to find the new ele-
ment positions. This process is repeated until the 
simulation is finished. This simultaneous numerical 
solution of the system is also known as the Molecu-
lar Dynamics (MD) formalism. 

For small deformations, cohesive frictional geo-
materials exhibit a linear elastic response. To repro-
duce this behavior, linear elastic interaction forces 
between the discrete elements are sufficient and lead 
to small simulation times. In the present model, the 
initial elastic interaction force, which represents the 
action of element a on element b, does not only in-
volve elements in contact, but elements which are 
also separated by a distance smaller than an interac-
tion radius controlled by a ratio γ defined by, 
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where Dab is the distance between the centroids of 
elements a and b; Ra and Rb are the radii of elements 
a and b; and γ ≥ 1. 

This is an important difference from classical dis-
crete element methods which use spherical elements 
where only contact interactions are considered (γ = 
1). γ was chosen so that the average number of inter-
actions per DE equals 12. By setting such a ratio, the 
macroscopic Young’s modulus which depends on 
the local stiffnesses is controlled more easily (Hentz 
et al. 2004a, Rousseau et al. 2008). However, this 
mid-range interaction is limited to nearest neighbors. 

The interaction force vector F which represents the 
action of DE a on DE b may be decomposed into a 
normal force vector Fn and a shear force vector Fs 
which may be classically linked to relative normal and 
incremental shear displacements respectively, through 
the stiffnesses, Kn and Kn2 in the normal direction and 
Ks in the tangential direction (Hart et al. 1988). 

The normal interaction force can be calculated 
through the updated local constitutive law, which is 
shown in Figure 1, and can be split into two parts, 
the compressive and the tensile components. In the 
compressive part, we propose a more complete for-
mulation of Fn in order to take into account the com-
paction process which occurs at a lower scale than 
the discretization size of the model. In this formula-
tion, the concrete’s response is first linear (section 
AB in Fig. 1) and the normal interaction force is 
given by, 

 

( )n n eq abF K D D= −                         (2) 

 
where Fn is the normal interaction force, Deq is the 
initial distance between two DE a and DE b respec-
tively. 

Then, when the interaction’s deformation reaches 
an elastic deformation limit εmax which is related to 
the interaction distance D1, a hardening-damage re-
sponse is considered (section BC in Fig. 1). At this 
step of the interaction, the normal interaction force is 
characterized by a nonlinear stiffness Kn2, which is 
an exponential function of the deformation and con-
trolled by three parameters ζ1, ζ2 and ζ3. This stiff-
ness is expressed as, 

 

( )( )2 max

2 1 3
*

n n
K K e

ζ ε ε
ζ ζ

−⎡ ⎤= +
⎣ ⎦

              (3) 

 
where maximum elastic deformation is defined by, 
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So, the complete normal interaction force is ex-

pressed as, 

1 2 1
( ) ( )n n eq n abF K D D K D D= − + −             (5) 

 
In the tensile part, the normal interaction force 

can also be computed with Equation 2. However, the 
stiffness may be modified by a softening factor ζ 
while the softening behavior occurs after the normal 
force has reached its maximum value, Fn,max, which 
is calculated by Equation 10. Therefore, the normal 
force is now calculated such that, 

 

( ) n
n ab rupture

K
F D D

ζ
= −                       (6) 

 
when the rupture occurs (Dab > Drupture), the interac-
tion forces are set to zero. 

The shear force vector Fs is calculated by updat-
ing its orientation which depends on the orientation 
of the direction passing through the two centroids of 
the interacting DE, and by adding the increment ∆Fs 
(Hart et al. 1988), which is defined by 

 
∆Fs = Ks∆Us                             (7) 

 
where ∆Us is the increment shear displacement vec-
tor between the locations of the interacting points of 
the two elements over a timestep ∆t. 

Note that the stiffnesses used here depend on the 
macroscopic elastic property and the size of the ele-
ments and can be expressed as, 

 

* *
n avg

K E Rα=                          (8) 

 

*
s n

K Kβ=                              (9) 

 
where α and β are dimensionless coefficients; E is 
Young’s modulus, which is set here using the value 
obtained by a compressive experiment test (Gabet et 
al. 2008); and Ravg is the average radius of the two 
interacting elements.  

 

 
Figure 1. Summarizes the constitutive law. 

 
 
To model the nonlinear behavior of the concrete 

material, a modified Mohr-Coulomb model has been 
used (Fig. 2). For a given interaction, the maximum 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



normal interaction force Fn,max is defined as a func-
tion of tensile strength T. The maximum shear inter-
action force Fs,max is characterized by the normal 
force Fn, the cohesion C, the contact frictional angle 
Φc and the internal frictional angle Φi. Therefore, the 
maximum normal force can be defined as, 

 

,max intn
F TA= −                             (10) 

 
where Aint = π(min(Ra,Rb))

2
 is defined as the inter-

acting surface. 
The maximum shear force is calculated for a 

“link” interaction, such that 
If Fn tanΦi < (λ – 1) C Aint:  

 

,max int
tan

s n i
F F CA= Φ +                    (11) 

 
else 

 

,max ints
F CAλ=                           (12) 

 
where λ is a dimensionless coefficient, which has 
been added to control the sliding threshold of the 
link interaction. 

When the new contacts appear during the simula-
tion, their maximum shear force will only be fric-
tional, 

 

,max
tan

s n c
F F= Φ                        (13) 

 

 
Figure 2. Rupture criterion used in the model. 

 

 
Figure 3. Rolling moment law considered between interacting 
DE. 

To reproduce quantitatively the behavior of a 
granular material when spherical discrete elements 
are used, the interaction between DE must transmit a 
moment (Alonso-Marroquin et al. 2006, Plassiard et 
al. 2009) which controls the rolling occurring during 
shear displacement. Doing so, the sliding process in-
creases and the resulting friction angle can reach 
values corresponding to those measured for concrete 
materials. This moment transferred between two 
elements in interaction can be written as, 

 

elast r r
M Kθ=∑                           (14) 

 
where θr is the relative rotation angle and Kr is the 
rotational stiffness. 

An elastic limit is introduced and when it is 
reached, the plastic moment defined by, 

 

plast n avgM F Rη=                         (15) 

 
will take place (Fig. 3). Here, η is a dimensionless 

factor used for the plastic moment and Ravg is the av-
erage radius of two interacting DE. Note that the ex-
pression of the local parameters includes the charac-
teristic size of the DE. The macroscopic mechanical 
properties therefore tend to be independent of the 
DE’s size. 

3 NUMERICAL SIMULATIONS 

The numerical model has been set up to simulate the 
experimental tests carried out by Gabet (Gabet et al. 
2008). For this purpose, the local parameters of 
model were first identified using uniaxial compres-
sive – tensile tests, hydrostatic tests at 650 MPa and 
the triaxial test carried out at 50 MPa. Once cali-
brated, the model made of polysized Discrete Ele-
ments, to ensure an isotropic behavior, will be used 
to predict the concrete sample's responses for the 
other confining pressures. 

3.1 Numerical sample preparation and monitoring 

The generated numerical sample is a parallelepiped 
and not a cylinder as in the experiments. This has 
been chosen to potentially investigate anisotropic 
loadings, but one could expect that the geometry has 
a negligible effect on the results (Haimson & Chang 
2000). The number of DE in the numerical sample is 
about 10000 and the resulting sample measures 0.07 
m×0.14 m×0.07m.. The positions and diameters of 
the DE have been generated randomly. 

A true numerical triaxial test is done using the 
following protocol. First, the numerical sample is 
subjected to a hydrostatic confining pressure up to a 
pressure value p, by moving surrounding plates (Fig. 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
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relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



4). Once this pressure value is reached, the top and 
bottom plates are moved vertically as loading plat-
ens, using a force-controlled condition. During the 
loading of the test, the displacement of the lateral 
plates are controlled to maintain a constant confining 
pressure p. Note that, these numerical tests are car-
ried out with frictionless lateral plates, similar to the 
experimental condition tests (Gabet et al. 2008), in 
which a confining fluid is used. To be as close as 
possible to the experimental tests, a small friction 
value is considered between the sample and the 
loading platens in the numerical case. The axial 
stress is computed by dividing the total axial force 
applied to the top plate to the sample by its surface 
and the deformations are computed via the move-
ment of plates. 

 

 
Figure 4. Configuration of triaxial test. 

3.2 Calibration 

The calibration of the model parameters is a neces-
sary step to simulate quantitatively the behavior of a 
real geomaterial. It is conveniently done by compar-
ing real and simulated reference tests. These com-
parisons will lead to set up the model's parameters, 
such as the tensile strength T, the cohesion C, the 
softening factor ζ, the internal friction angles Φi and 
Φc, the stiffnesses' coefficients (α, β, ζ1, ζ2 and ζ3), 
the maximum elastic deformation εmax and the coef-
ficient of maximum shear force λ. The interaction's 
range γ has been fixed by the geometry of the nu-
merical sample and its value is 1.37. The identifica-
tion procedure (which has been already developed in 
similar in previous works (Hentz et al. 2004b, Rous-
seau et al. 2008)) is through a group of reference 
tests which include, a uniaxial compression-traction 
test, a hydrostatic test at 650MPa and a triaxial 
50MPa test. 

The uniaxial compression-traction tests have been 
used to calibrate the local parameters α, β, C, ζ, T, Φi 

and Φc. First of all, the linear stiffnesses' coefficients 
α and β were varied to match Young’s modulus and 
Poisson's ratio of the concrete material while all 
other parameters of the test were kept constant with 
a sufficiently high value to respect a purely elastic 
response of the model. The uniaxial tensile test was 
used to evaluate the local tensile strength T and the 
softening coefficient ζ. Then, the compressive test 
was used to evaluate the values of the cohesion C, 
the friction angles Φi and Φc. These values were 
chosen according to the macroscopic values, such as 
the compressive strength σc and the tensile strength 
σt. Doing so, the numerical and experimental results 
for the tensile and compressive tests show quite a 
good agreement (see Fig. 5, where the axial stress σ1 
versus the axial strain ε1 and the lateral strain ε2 are 
plotted). 

 

 
Figure 5. Stress-strain curves for uniaxial compressive test. 
Solid and dotted lines correspond to the numerical and experi-
mental results respectively.  

 
The uniaxial compression test is not sufficient to 

calibrate the full irreversible response of the model, 
which is also characterized by the three hardening 
stiffness ratios ζ1, ζ2, ζ3 and the maximum elastic de-
formation εmax. This is why an experimental hydro-
static test performed with a confining pressure 
reaching 650MPa was used. With this hydrostatic 
test, it was possible to obtain information on the 
compaction process of the concrete material and to 
evaluate the contribution of this phenomenon. 

The full triaxial 50MPa test was used to finish the 
calibration process by fixing the value of the rupture 
criterion coefficient λ. This parameter controls the 
maximum shear force. When the lateral deformation 
decreases, a transition contraction-dilatancy is ob-
served in the experiments (Fig. 6). This volumetric 
transition is well reproduced by the model when 
choosing the right value for λ.  

Thus, the full elastic-hardening-damage law of 
the numerical model can reproduce quantitatively 
the experimental triaxial compressive test carried out 
by Gabet (Gabet et al. 2008). The local parameters 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



of the model have been calibrated and their values 
are given in Table 1. 

 

 
Figure 6. Mean stress-volumetric strain curves at 50MPa con-
fining pressure. Solid and dotted lines correspond to the nu-
merical and experimental results respectively. 

 
Table 1. Local parameter values of the numerical model. 

Parameters Values 

Coefficient α 1 
Coefficient β 0.25 
εmax (%) 0.2 
Tensile limit (MPa) 9 
Cohesion C (MPa) 4 
Softening ζ 5 
Frictional angles Φi and Φc (°) 30 
Coefficient ζ1 0.2 
Coefficient ζ2 16 
Coefficient ζ3 0.275 
Coefficient λ 5 

3.3 Prediction for the other confining pressure 

The model parameters have been calibrated using 
uniaxial compressive-tensile, hydrostatic at 650MPa 
and triaxial at 50MPa tests. Without changing the 
values of these parameters, the numerical model is 
now used to simulate triaxial tests at other confining 
pressures. Four triaxial tests have been simulated for 
the following confining pressures: 100 MPa, 200 
MPa, 500 MPa and 650 MPa. They are compared 
with data also available in the experimental cam-
paign. For all theses cases, the same initial numeri-
cal parallelepiped sample has been used. Both, ex-
perimental and numerical results are presented with 
lateral-axial strain/axial stress components and volu-
metric curves. 

3.3.1 Strain-stress response of triaxial tests 
The results indicate that in the hydrostatic phase, the 
numerical results are very close to the experimental 
measurements. 

In the differential-stress phase, the simulated re-
sults are overall comparable with the experimental 
ones. Experimentally, for the 100MPa test, a stagna-
tion of the axial pressure is observed, without reach-

ing a peak as is the case in the 50MPa test. Then, for 
the 500MPa and 650MPa tests, the stiffness curves 
gradually decrease without changing slope. All the 
numerical curves show a stress peak and before it 
occurs, a decrease of the stiffness is observed in both 
the model and the experiments. The numerical and 
the experimental results differ in that the axial stress 
peaks are reached earlier in the numerical model 
than in the experiment. When adding friction on the 
lateral plates in the numerical sample, this discrep-
ancy tends to vanish. However, by doing so the elas-
tic deformation is no longer homogeneous in the 
numerical sample. Thus, a clear explanation could 
not be obtained from the model, despite a large pa-
rametric study. 

 

 
Figure 7. Stress-strain curves for 50MPa, 100MPa, 200MPa, 
500MP and 650MPa (c) confining pressures. Solid and dotted 
lines correspond to the numerical and experimental results re-
spectively.  

3.3.2 Volumetric behavior and limit state 
As expected, the numerical and experimental volu-
metric deformations on the hydrostatic phase seem 
to fit very well (see Fig. 8). However, when the con-
traction-dilatation transition occurs at the same mean 
stress value, the amplitudes of the maximum con-
traction of the numerical volumetric curves are 
lower than the experimental ones. This result is di-
rectly linked to the observations made on the stress-
strain curve, and the conclusions are similar. Note 
that in the 500MPa experimental test, the results do 
not show a contraction-dilatancy transition because 
this test has been prematurely stopped. 

Another way to deal with the contraction-
dilatancy transition (also called the limit state), is to 
represent it in the (σm, q) stress space (see Fig. 9). 
Here again, the experimental and numerical results 
are in a very good agreement. Thus, it can be con-
cluded that the numerical model can reproduce mac-
roscopic key properties such as the volumetric strain 
of concrete during the hydrostatic phase and the con-
traction-dilatancy transition. 

 

Proceedings of FraMCoS-7, May 23-28, 2010

hThD ∇−= ),(J                             (1) 
 

The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



 
Figure 8. Mean stress-volumetric strain curves for the 100MPa, 
200MPa, 500MPa and 650MPa confining pressures. Solid and 
dotted lines correspond to the numerical and experimental re-
sults respectively. 

 

 
Figure 9. Limit state points, defined as contraction-dilatancy 
transition on the volumetric behavior curves for the experimen-
tal and numerical tests, are represented in the (σ

m
, q) stress 

space. 

4 CONCLUSION 

A Discrete Element Model using a local elastic-
hardening-damage constitutive law has been formu-
lated to reproduce the behavior of concrete at high 
confining pressures. Regarding the reduced set of 
experimental data, a calibration step has been done 
prior to using the model for predictive simulations. 
The results show that the experimental stress-strain 
and volumetric curves were quantitatively well re-
produced. The compaction process results from a 
coupling between an elastic behavior and two simul-
taneous irreversible phenomena which are, the col-
lapse of the porosity of the sample and the structural 
de-cohesion of the cement matrix (Gabet et al. 
2008). When the confining pressure is high, the rear-
rangement of the DEs within the numerical model is 
no longer possible, since the DE cannot be deformed 
and only overlapping is authorized. Thus, the only 
way to simulate the compaction process is to control 

how the overlapping will evolve and this is done by 
adding the non-linear hardening step to the com-
pressible part of the interaction forces. The key point 
is that when using a description of the medium, by 
simply adding this normal interaction force type, it is 
possible to get a good macroscopic description (i.e. 
stress-strain or volumetric curves). 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
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assume that the evaporable water is a function of 
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= age-dependent sorption/desorption isotherm 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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