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ABSTRACT: This paper presents the formulation of the Discontinuous Cell Method (DCM) for the simula-
tion of fracture propagation in homogeneous cohesive solids. Solid volumes are discretized by using Delau-
nay triangulation and its dual Voronoi tessellation. Rigid body kinematics of each Voronoi cell is adopted to 
approximate the displacement field. Weak forms of both equilibrium and compatibility Equations are used to 
derive the discretized DCM Equations. Elastic analyses and fracture simulations are carried out to investigate 
convergence and accuracy of the proposed method. 

1 INTRODUCTION 

A quantitative investigation of cohesive fracture 
propagation necessitates an accurate description of 
various fracture phenomena including: crack initia-
tion; propagation along complex three-dimensional 
paths; interaction and coalescence of distributed 
multi-cracks into localized continuous cracks; tem-
perature and humidity effects; loading rate effects; 
effect of the confining pressure; and interaction be-
tween fractured and unfractured material.  

The classical finite element (FE) method, al-
though it has been used traditionally to address some 
of these aspects, is inherently incapable of modeling 
the displacement discontinuities associated with 
fracture. To address this issue, advanced computa-
tional technologies have been developed in the re-
cent past. 

First, the embedded discontinuities methods (EDM) 
were proposed to handle displacement discontinuity 
within finite elements. In these methods the crack is 
represented by a narrow band of high strain, which 
is embedded in the element and can be arbitrarily 
aligned. Many different EDM formulations can be 
found in the literature and a comprehensive com-
parative study of these formulations appears in 
Jirásek (2000). The most common drawbacks of 
EDM formulations are stress locking (spurious stress 
transfer between the crack surfaces), inconsistency 
between the stress at the crack interface and the 
stress in the bulk of the material, and mesh sensitiv-
ity (where the crack path depends upon mesh align-
ment and refinement). 

A method that does not experience stress locking 
and reduces mesh sensitivity is the extended finite 
element method (XFEM). The XFEM, first intro-
duced to model cracks by Belytschko & Black 
(1999), exploits the partition of unity property of FE 

shape functions. This property enables discontinuous 
terms to be incorporated locally in the displacement 
field without the need of topology changes in the 
initial (uncracked) mesh. The XFEM has been suc-
cessfully applied to a wide variety of problems 
(Moes et al. 1999, Dolbow et al. 2000, Belytschko et 
al. 2001, Belytschko et al. 2003). The drawbacks of 
this method are that the implementation into existing 
FE codes is not straightforward, the insertion of ad-
ditional degrees of freedoms is required on-the-fly to 
describe the discontinuous enrichment, and complex 
quadrature routines are necessary to integrate dis-
continuous integrands. 

Another approach widely used for the simulation 
of cohesive fracture is based on the adoption of co-
hesive zero-thickness finite elements located at the 
interface between the usual finite elements that dis-
cretize the body of interest (Camacho & Ortiz 1996, 
Ortiz & Pandolfi 1999). This method, even if its im-
plementation is relatively straightforward, tends to 
be computationally intensive because of the large 
number of nodes that are needed to allow fracturing 
at each element interface. Furthermore, in the elastic 
phase the zero-thickness finite elements require the 
definition of an artificial stiffness to ensure inter-
element compatibility. This stiffness usually deterio-
rates the accuracy and rate of convergence of the 
numerical solution and it may cause numerical in-
stability. To avoid this problem, algorithms have 
been proposed in the literature (Pandolfi & Ortiz 
2002) for the dynamic insertion of cohesive fractures 
into FE meshes. The dynamic insertion works rea-
sonably well in high speed dynamic applications but 
is not adequate for quasi-static applications and 
leads to inaccurate stress calculations along the 
crack path. 

An attractive alternative to the aforementioned 
approaches is the adoption of discrete models (parti-
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cle and lattice models), which replace the continuum 
a priori by a system of rigid elements that interact 
by means of linear or nonlinear springs. These mod-
els were first developed to describe the behavior of 
particulate materials (Cundall & Strack 1979) and 
later adapted to simulate cemented materials (Bažant 
et al. 1990, Schlangen & VanMier 1992, Bolander & 
Saito 1998, Bolander et al. 1999, Bolander et al. 
2000, Lilliu & Van Mier 2003, Cusatis et al. 2003a,b, 
Cusatis et al. 2006, Cusatis & Cedolin 2006, Cusatis 
at al. 2007a,b, Cusatis et al. 2008). 

Discrete models can realistically simulate fracture 
propagation without suffering from the aforemen-
tioned typical drawbacks of other computational tech-
nologies. The effectiveness and the robustness of the 
method are ensured by the fact that: a) their kinematics 
naturally handle displacement discontinuities; b) the 
crack opening at a certain point depends upon the dis-
placements of only two nodes of the mesh; and c) the 
constitutive law for the fracturing behavior is vecto-
rial. Despite these advantages the general adoption of 
these methods to simulate fracture propagation in con-
tinuous media has been quite limited because of vari-
ous drawbacks in the uncracked phase, including: 1) 
the stiffness of the springs is defined through a heuris-
tic (trial-and-error) characterization; 2) various elastic 
phenomena, such as the Poisson effect, cannot be re-
produced exactly; 3) the convergence of the numerical 
scheme to the continuum solution cannot be proved; 4) 
amalgamation with classical tensorial constitutive laws 
is not possible; and 5) spurious numerical heterogene-
ity (not related to the internal structure of the material) 
is inherently associated with these methods. 

The Discontinuous Cell Method (DCM) pre-
sented in this paper provides a unified framework 
between discrete models and continuum based me-
thods. The DCM formulation can potentially avoid 
most of the aforementioned shortcomings affecting 
current computational methods for cohesive fracture. 

2 WEAK FORMS OF EQUILIBRIUM AND 
COMPATIBILITY 

Within the assumptions of the first order theory, static be-
havior of continuous media can be expressed as:  
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where σij is the stress tensor, f0i represent body 
forces, εij is the strain tensor, ui is the displacement 

field, x=[x1 x2 x3]
T
 is the position vector, and Ω is 

the solid volume. Equations 1, 2, and 3 represent 
equilibrium, compatibility, and constitutive Equa-
tions, respectively.  It is noted here that unless oth-
erwise indicated, index summation convention is 
used throughout this text. 

The system of Equations 1, 2, and 3 can be inte-
grated once essential (ui-u0i=0; x∈Γu) and/or natural 
(σijni-t0i=0; x∈Γt) boundary conditions are assigned. 
Γ=Γu+Γt is the boundary of Ω; ni is the outward 
normal to Γ, and u0i, t0i are displacements and trac-
tions, respectively, given on Γ. 

By integrating Equations 1 and 2 over the volume Ω 
and by using Green’s theorem one can obtain the weak 
forms of equilibrium and compatibility, which read:  

 

� �
0

0

0

d d d

d
t

ij ij i i i i

i i i

t u f u

t u u

σ δε δ δ

δ δ

Ω Γ Ω

Γ

Ω+ Γ = Ω+

+ Γ ∀

∫ ∫ ∫

∫
 (4) 

 
and 

 

� �
0

d d d
t

ij ij i i i i ij
u t u tε δσ δ δ δσ

Ω Γ Γ

Ω+ Γ = Γ ∀∫ ∫ ∫  (5) 

 
where homogeneous essential boundary conditions 
are considered for simplicity; and δti=δσijni, δεij=  
0.5(δui,j+δuj,i), and δui, δσij are appropriate test func-
tions which satisfy homogeneous essential boundary 
conditions and homogeneous equilibrium Equations 
(self-equilibrated stresses), respectively. In Equa-
tions 4 and 5, the displacements ui and the test func-
tions δui are allowed to be discontinuous on the ori-
ented surface Γ0. The jump of u and δu across Γ0 are 
defined as:  
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where u

+
 and δu

+
 are the displacements and the test 

functions on the positive side of Γ0, and u
-
 and δu

-
 are 

the same quantities on the negative side of Γ0. 

3 DISCONTINUOUS CELL METHOD (DCM) 

Consider a discretization of volume Ω obtained by a 
Delaunay triangulation (tetrahedralization in 3D) 
and its dual Voronoi tessellation (Fig. 1). 

The discretizised weak equilibrium and compati-
bility Equations for one triangle (tetrahedron in 3D) 
of the mesh can be expressed as follows:  
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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mation of the actual stress tensor, u

h
i is an approxi-

mation of the actual displacement field, and δu
h
i and 

δσ
h
ij are finite sets of orthogonal functions (basis func-

tions) selected in the same space as the approximating 
functions (Galerkin approach). The functions u

h
i and 

δu
h
i are assumed to be discontinuous on the surface Γe0 

which is defined by the union of the facets Γ
k
0 (trian-

gles in 3D and line segments in 2D) forming the 
boundaries of each Voroni cell in the mesh. 

The DCM formulation is based on the following 
selection of the basis functions: 
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where ΩI is the Voronoi cell associated with node I, and 
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where uI and θI are the nodal displacements and ro-
tations (degrees of freedom). 

By introducing Equations 9 and 10 into Equations 
7 and 8, and after some mathematical manipulation, 
one obtains: 
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where A0k is the area of the facet Γ

k
0 and uCi

h
 is the 

displacement at the centroid C of the facet Γ
k
0. 
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Figure 1. Delaunay triangulation and Voronoi tessellation. 

Finally, combining Equations 11 and 12, and 
summing up the contributions of all elements in the 
mesh, one obtains a system of algebraic Equations 
(coinciding with the equilibrium Equations of the 
Voronoi cells) which allows for the computation of 
the nodal degrees of freedom once a relationship be-
tween the tractions tki and the openings wki is estab-
lished. This relationship needs to be determined on 
the basis of the constitutive Equations. 

4 ELASTIC BEHAVIOR 

For a homogeneous and isotropic elastic medium, 
the constitutive law can be expressed as: 

 

,ij V V ij D D ij
E Eσ ε δ ε= +                      (13) 

 
where εV=εii/3=volumetric strain, δij=Kronecker delta, 
εD,ij=εij-εVδij=deviatoric strain tensor, EV=E/(1-
2ν)=volumetric modulus, ED=E/(1+ν)=deviatoric 
modulus, E=Young’s modulus, and ν =Poisson’s ra-
tio. 

By considering an average strain tensor in an 
element Ω

e
, one can obtain the relationship between 

the tractions tki and the openings wki by requiring 
that for a virtual variation of the stress tensor and 
facet tractions, the virtual complementary energy as-
sociated with the average strain equals the one asso-
ciated with the openings wki: 
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With the appropriate choice of δσij and some ma-
thematical manipulation, one can obtain: 
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where Ve=element volume; wNk=nk
T
wk, wMk= mk

T
wk, 

and wMk=lk
T
wk are the opening components orthogo-

nal and tangential, respectively, to the facet Γ
k
0; nk, 

mk, and lk are unit vectors orthogonal and tangential, 
respectively, to the facet Γ

k
0; and Hk is the length of 

the element edge attached to the facet Γ
k
0 (Fig. 2). 

The parameter αν is equal to 1 for three-dimensional 
and two-dimensional plane strain states whereas is 
equal to (1-ν)/(1-2ν) for two-dimensional plane 
stress states. 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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Figure 2. Facet area, edge length, and facet unit vectors. 

 
Numerical experiments carried out in this study 

show that the 2D DCM triangle passes the patch test 
and it is able to reproduce exactly uniform strain and 
stress fields. 

Furthermore, in order to study the convergence of 
the present method to the exact elastic solution, a 
classical cantilever beam test (Hughes 2000) was 
simulated by using six different meshes at various 
levels of refinement. The simulated beam was char-
acterized by a length-to-depth ratio equal to 4. Fig-
ure 3 shows the coarsest mesh (132 elements) and 
the finest mesh (1958 elements) used in the conver-
gence study. For comparison, the same numerical 
simulations were performed using a standard con-
stant strain triangular (CST) finite element. All the 
computations were carried out under plain strain 
conditions, with a Poisson’s ratio of 0.3. 

 

Mesh 1:  132 Elements

Mesh 6:  1958 Elements

 
Figure 3. Coarsest (top) and finest (bottom) mesh used for the 
convergence study.  

 
Figure 4 presents the results of the convergence 

study. In the top, one can see the percentage error 
for the total elastic energy as a function of the in-
verse of square root of the number of elements (pro-
portional to characteristic element size). The bottom 
part of the figure reports the numerical results in 
terms of the vertical displacement at the tip of the 
cantilever beam. For the strain energy, the average 
convergence rates for the DCM and CST, respec-
tively, are 1.76 and 1.99, and for the tip displace-
ment they are 1.88 and 2.02. The theoretical conver-

gence rate for the CST is 2 for both strain energy 
and tip deflection. 

Although the convergence rates of the DCM and 
the CST are comparable, the DCM outperforms CST 
in terms of accuracy. The CST error in both strain 
energy and tip deflection is one order of magnitude 
higher than the DCM error. In terms of energy, for 
example, the DCM error ranges from 0.9% to 0.08% 
(coarsest to finest mesh), whereas the CST error 
ranges from 10% to 0.8%. 

 

 
Figure 4. Convergence study in terms of energy (top) and tip 
displacement (bottom). 

5 COHESIVE FRACTURING BEHAVIOR 

The convergence study presented in the previous 
section demonstrates that DCM performs very well 
in the elastic regime. However, the most attractive 
feature of this method is the ability of easily ac-
commodating the displacement discontinuity associ-
ated with fracture without suffering from the typical 
shortcomings of the classical finite element method, 
the limitations of typical particle models, or the 
complexity and the high computational cost of ad-
vanced finite element formulations (such as the ex-
tended finite element method and the embedded dis-
continuity method). 

In this section a simple isotropic damage model is 
introduced in the DCM framework in order to simu-
late the initiation and propagation of quasi-brittle 
fracture. 

According to classical damage mechanics and the 
DCM formulation for elasticity presented above, the 
facet tractions tNk , tMk and tLk in a damaged material 
can be calculated as:  
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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where Dk is the damage parameter. 

The evolution of the damage parameter is as-
sumed to be governed by a history variable, the 
maximum effective strain (εmax), characterizing the 
overall amount of straining to which the material has 
been subjected during prior loading: 
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where <x>=max(0,x), εt is a material parameter gov-
erning the onset of damage, and εfk governs the dam-
age evolution rate. 

The maximum effective strain is defined as:  
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In order to ensure convergence upon mesh re-

finement and to avoid spurious mesh sensitivity 
(Bažant & Oh 1984), one can write:  
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where lt is Hillerborg’s characteristic length, which 
is assumed to be a material parameter. 

In order to provide a demonstration of DCM abil-
ity to simulate cohesive fracture with this simple 
two-parameter model, the analysis of an experimen-
tal investigation that included the load versus dis-
placement response for plain concrete in uniaxial 
tension was utilized (Li et al. 1998). As part of that 
investigation, panels with an approximate length of 
240 mm and a cross-section of 100 mm by 20 mm 
were subjected to displacement controlled uniaxial 
tension. Two LDVTs, each with 120 mm length, 
were situated on both sides of the 100 mm width.  
The applied displacement was controlled by the 

LDVT that bounded the location of the fracture lo-
calization. The overall load versus displacement re-
sponse was recorded, and is reproduced here in Fig-
ure 5.  

 

 
 

 

 
Figure 5. Load versus displacement curves (top), and fracture 
patterns: coarse mesh (center), refined mesh (bottom). 

 
For the DCM simulation, a rectangular domain of 

120 mm length, 100 mm width, and 20 mm out-of-
plane thickness was used to model the portion of the 
experimental specimen that contained the fracture 
localization. Two triangulations of the domain were 

Proceedings of FraMCoS-7, May 23-28, 2010

hThD ∇−= ),(J                             (1) 
 

The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  

 

J•∇=
∂

∂
−

t

w
                              (2) 

 
The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 

 

nsc
w

s

e
w

c

e
w

h
h

D
t

h

h

e
w

&&& ++
∂

∂

∂

∂

=∇•∇+
∂

∂

∂

∂

− αα

αα

)(

    

(3)
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isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 

 

( ) s
s

s

vg
kc

c

c

vg
k

sc
G αααα +=,
1

                 (5) 

 
where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  

 

( )
1

1
10

1
10

1
1

22.0188.0
0

,
1

−
⎟
⎠

⎞
⎜
⎝

⎛
−∞

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−∞

−−+−

=

h
cc

g
e

h
cc

g
eGs

s
s
c

w

sc
K

αα

αα

αα

αα

 

(6)

 
 
The material parameters k
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be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 
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where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



considered: a coarse mesh with 190 elements, and a 
refined mesh with 746 elements. The discretizations 
were made as random as possible, subject to the de-
sire for each mesh to have a certain characteristic 
element length. A non-zero velocity was applied to 
one end of the DCM mesh, and a zero-valued veloc-
ity was applied to the other. The load versus dis-
placement response was calculated using an explicit-
dynamic algorithm (Cusatis et al. 2003b) and using 
the same parameters for each mesh (εt = 0.12×10

-3
, lt 

= 700 mm). 
Since the stress and strain are uniform in un-

cracked phase, some elements were made weaker in 
order to trigger localization. For these elements a 
25% reduction of εt and lt was used.  

The resulting fracture patterns are shown in Fig-
ure 5 (center and bottom). They were visualized by 
amplifying the nodal displacements by a factor of 
50, and plotting the displaced location of the rigid 
Voronoi cells. 

The overall stress (load divided by the cross-
sectional area) versus displacement curves are shown in 
Figure 5 (top). The responses of both meshes match 
well the experimental curve (Fig. 5, top) and, most 
importantly, there is no significant difference be-
tween the responses of the two meshes. This con-
firms that, within the DCM framework, the simple 
regularization model reported in Equation 24 is al-
ready enough to avoid mesh sensitivity and spurious 
localization. 

6 DCM AND PARTICLE MODELS 

DCM and classical particle models are basically 
governed by the same set of algebraic Equations ex-
pressing compatibility and equilibrium. This natu-
rally follows from the adoption of rigid body kine-
matics which is common to the two approaches. 

The difference between the two methods lies in 
the formulation of the constitutive law, namely in 
the relationship between facet tractions tk and facet 
openings wk (see Equations 16 and 17). 

 For classical particle models, which consider 
rigid particles connected with springs, this relation-
ship can be expressed as: 
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where the normal elastic stiffness, EN, and the tan-
gential elastic stiffness, ET, are assumed to be mate-
rial properties. 

By comparing Equations 16 and 17 with Equation 
25, one can observe that an exact correspondence 
between the two formulations exists if, and only if, 
EN=ET=ED and EV=ED. These conditions correspond 

to an elastic material with zero Poisson’s ratio 
(Bolander et al. 1999). 

By properly setting the ratio between the normal 
and tangential stiffnesses, particle models can simu-
late an “average” non-zero Poisson’s ratio (average 
in the sense that Poisson’s ratio is defined by analyz-
ing a finite, as opposed to an infinitesimal, volume 
of material. In this case, however, particle models 
feature an intrinsic heterogeneous response even un-
der uniform solicitations (for additional discussion 
of this issue see also Bolander et al. 1999). 

In conclusion, for non-zero Poisson’s ratio the 
two formulations are fundamentally different and 
the key difference is that DCM accounts for the or-
thogonality of the deviatoric and volumetric de-
formation modes while classical particle models 
do not. 

It must be mentioned here that the heterogeneous 
response of particle models is not necessarily a 
negative property and, actually, it is critical for their 
ability of handling automatically strain localization 
and crack initiation. It must be kept in mind, how-
ever, that in this case the size of the discretization 
cannot be user-defined but must be linked to the ac-
tual size of the material heterogeneity. Only under 
this condition can one consider the heterogeneous 
response of particle models to be a representation of 
the actual internal behavior of the material rather 
than a spurious numerical artifact.  

7 CONCLUDING REMARKS 

In this paper, the formulation of the Discontinuous 
Cell Method (DCM) has been outlined. A conver-
gence study in the elastic regime shows that DCM 
converges to the exact continuum solution with a 
convergence rate that is comparable to that of con-
stant strain triangles, but with accuracy that is one 
order of magnitude higher. 

In addition, numerical simulations of fracture 
show that DCM easily simulates cohesive fracture 
propagation without the drawbacks of standard finite 
elements and without the complications of most re-
cently formulated computational techniques. 

Future DCM work will include the formulation of 
2D quadrilateral elements, the formulation of 3D 
elements, and the application of the DCM frame-
work to the numerical simulation of dynamic mate-
rial fragmentation. 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k
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vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 
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where q is the heat flux, T is the absolute 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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