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ABSTRACT: The good description of discrete cracking by XFEM brings along with it a large amount of ad-
ministration and some extra computational costs due to extra degrees of freedom at the system level. In order 
to avoid these additional degrees of freedom necessary to describe the crack opening in the element are elimi-
nated locally. The displacement field enrichment in the standard XFEM leads to a mismatch between the 
stress fields in the continuum and at the crack. Even with a linear stress-crack opening relationship the 
stresses in the crack will be one order higher than the stresses in the continuum. Here a triangular element 
with a linear strain interpolation is enriched with a linear discontinuous displacement field and thereby mak-
ing the stress variations more consistent. This consistency makes it possible to directly enforce stress continu-
ity across the crack and consequently eliminate the extra degrees of freedom at system level. The unavoidable 
drawback of this is the possibility of a displacement discontinuity between cracked elements and therefore the 
virtual work performed at these discontinuities is included in the formulation in order to reduce this non-
conformity. The element is tested in a beam configuration subjected to three point bending and it performs 
well

1 INTRODUCTION 

Since the introduction of XFEM by (Belytschko & 
Black 1999) and (Moës et al. 1999) it has proven to 
be a strong tool for modeling discrete cracks. XFEM 
has the ability to independently model the separated 
parts of the element without any coupling, which is 
the reason for its good numerical behavior compared 
to embedded formulations, see e.g. (Jirásek & Be-
lytschko 2002). XFEM was introduced for linear 
elastic fracture mechanics but has since been applied 
to cohesive crack modeling, see e.g. (Weels & Sluys 
2001), (Moës & Belytschko 2002) and (Asferg et al. 
2007a). In recent years partly cracked elements have 
been formulated by (Zi & Belytschko 2003) and 
(Asferg et al. 2007b) and with the latest develop-
ment (Mougaard et al. 2009) very accurate modeling 
can be obtained with few elements. One example is 
the standard three point bending test which in (Mou-
gaard et al. 2009) was modeled with a reasonable 
accuracy using only 4 elements over the height of 
the beam. 

The drawback of this good description of discrete 
cracking by XFEM is the heavy administration and 
the additional extra computational costs due to extra 
degrees of freedom at the system level. 

In this view it is still appealing to investigate 
whether the additional degrees of freedom can be 
eliminated locally, resulting in an embedded formu-
lation, without jeopardizing the good performance 
by standard XFEM. 

In the standard XFEM formulation the chosen or-
der of the displacement field is kept intact after the 
element has cracked. This means that the displace-
ment jump at the crack is modeled with the same or-
der as in the continuum. This leads to a higher order 
of stresses in the crack than in the continuum. Even 
with a linear stress-crack opening relationship the 
stresses in the crack will be one order higher than 
the stresses in the continuum. In the present formula-
tion it is therefore suggested to use a discontinuous 
displacement field one order lower than for the con-
tinuous part of the displacement field. By using a 
lower order discontinuous displacement field the 
stresses in the continuum and in the crack will be 
more consistent. This enhanced consistency and the 
limited number of discontinuous variables allows for 
a direct enforcement of the stress continuity at the 
crack. The enforcement is done locally and thereby 
eliminates the extra degrees of freedom which would 
otherwise exist at the system level. The result of the 
present formulation is a local enrichment of the ele-
ment but with no coupling to neighboring elements 
and therefore it is in fact an embedded formulation. 
It should be pointed out that in the present formula-
tion the stress continuity is fulfilled exactly and not 
in a weak sense as in most other embedded formula-
tions (Jirásek 2000). 

The unavoidable drawback of embedded formula-
tions is the possibility of a discontinuity at an inter-
element boundary cut by a crack because of the lack 
of coupling between cracked elements. As a crack 



progresses through elements it is possible, as in 
XFEM, to ensure that the crack enters the next ele-
ment at the same point as it exits the first element 
and in this way minimize the discontinuity. In a 
model with a reasonable element mesh the stress 
discontinuity will be limited at this inter-element 
boundary. Since the stress continuity is enforced ex-
actly at the crack in the adjacent elements, the dis-
placement discontinuity at this inter-element bound-
ary will be in the same order as the stress 
discontinuity between elements. Even though this 
displacement discontinuity at an inter-element boun-
dary is limited, it is a non-conformity which should 
be kept at a minimum and therefore the virtual work 
performed at these discontinuities is included in the 
formulation. 

Here a triangular element of LST type is pre-
sented, with a linear strain interpolation enriched 
with a linear discontinuous displacement field. Most 
of the previous embedded formulations have been of 
CST type see e.g. (Oliver 1996) and (Sancho et al. 
2007). In this preliminary investigation the element 
is formulated as a fully cracked element, realizing 
that this results in reduced accuracy and non-
physical situations, since the element fully cracks 
when the element stress reaches the tensile strength 
in just one point. The element is tested in a beam 
configuration subjected to three point bending and 
shows reasonable accuracy. 

2 KINEMATICS 

In the present formulation we adopt the partition of 
the displacement field into a continuous part and a 
discontinuous part, from XFEM. The displacement 
field may therefore be written as 

 

( ) ( ) ( )c c d dx, y x, y x, y= +u N V N V               (1) 

 
where

c
N and dN are interpolation matrices, 

c
V and 

dV are displacement vectors and c refers to the con-
tinuous part and d refers to the d iscontinuous part. 
In the present element the continuous part is chosen 
to be the same as for the standard linear strain trian-
gle with 12 displacement variables. The discontinu-
ous part of the displacements can be found by multi-
plying a continuous shape function with the 2D 
Heaviside step function ( , )IH x y  
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where ( , )IH x y is zero on the same side of the crack as 
node I and one on the other side and I

cN
� is the part of 

the interpolation matrix corresponding to node I .

 The discontinuous part of the displacements is 
chosen one order lower than the continuous part. 

 

 
Figure 1. Linear discontinuous displacement field. (a): Geome-
try of crack. (b, c and d): displacement field for node 1, 2 and 
3. (Asferg et al. 2007a). 

 
The continuous shape functions used to create the 
discontinuous shape functions are therefore chosen 
to be the same as for the constant strain triangle. The 
discontinuous shape functions are shown in Figure 
1. 

By choosing the discontinuous displacements one 
order lower than the continuous displacements the 
variation of the stresses in the continuum will be lin-
ear, and the variation of the stresses bridging the 
crack will be approximately linear. 

3 VARIATIONAL AND FEM FORMULATIONS 

The virtual work can be written as 
 

� �TT T
d d dδ δ δ

Ω Γ Ω

Ω+ Γ = Ω∫ ∫ ∫u t u fε σ

       
  (3)

 
 

where ε are the strains, σ are the stresses, � �u are 
the displacement discontinuities or jumps, t are the 
tractions, u are the displacements and f are the 
loads. 

The strains are expressed as 
 

c c d d= +BV B Vε                            (4) 

 
where

c
B relates to the continuous displacements 

and dB relates to the discontinuous displacements. 
For a linear elastic continuum the stresses are ex-

pressed as 
 

=Dσ ε                                  (5)
  

whereD is the constitutive matrix for a disk in either 
plane strain or plain stress. 

The displacement discontinuity in the crack can 
be expressed as 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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                              (2) 

 
The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 

 

nsc
w

s

e
w

c

e
w

h
h

D
t

h

h

e
w

&&& ++
∂

∂

∂

∂

=∇•∇+
∂

∂

∂

∂

− αα

αα

)(

    

(3)

 
 

where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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where 

cr
T is the transformation matrix from the 

global ( , )x y -coordinate system to the local ( , )n s - 
coordinate system in the crack and superscript I  
and II  refers to the parts shown in Figure 2. 

 

 
Figure 2. Element with crack from 1C to 2C dividing it in parts 
I and II .  

 
The tractions in the crack are in general non-

linearly related to the displacement discontinuities, 
opening and sliding, and they are defined by the 
constitutive model. Here this is simply stated as two 
functions 
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The incremental relationship between tractions 

and the displacement discontinuities can be ex-
pressed as 

 

� �
cr cr

d d=t D u                            (8) 

 
At the element sides cut by a crack the discon-

tinuous displacements will in general lead to a dis-
continuity between elements. This discontinuity will 
be limited since the location of the crack in two ad-
jacent elements will be the same, and with similar 
stress states in these two adjacent elements the con-
straints will lead to similar openings.  

 
 

 
Figure 3. Inter-element discontinuity for two detached ele-
ments. The work is formulated as a contribution from each 
element. 

 
 
In order to limit these inter-element discontinui-

ties the work done at these boundaries is included in 

the internal virtual work. The work is formulated as 
a contribution from each element, see Figure 3 
where the displacement is shown perpendicular to 
the element plane. If the opening is equal in the two 
elements the discontinuity is zero and the two terms 
cancel each other. This inter-element discontinuity 
displacement contribution from one element, meas-
ured positive as an opening, i.e. a retraction of the 
boundary into the element, can be expressed as 
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where ieT is the transformation matrix from the glob-
al ( , )x y -coordinate system to the local ( , )n s -
coordinate system at the boundary. 

The tractions at the inter-element boundary can 
be expressed as 

 

ie ie
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where ie

σ

T is the transformation matrix from stresses 
in the global( , )x y -coordinate system to tractions in 
the local( , )n s -coordinate system at the boundary. 

Using the virtual work Equation (3) and the defi-
nitions of generalized strains (4), (6) and (9) and 
stresses (5), (8) and (10) the tangential stiffness ma-
trix stating the incremental relationship between the 
applied load and the displacements can be found to 
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The part from the inter-element boundary, iek , 

makes the tangential matrix non-symmetric. This 
term is essential for the behavior of the element and 
only with this term the cracked element can pass a 
two element test with a simple uniaxial state of 
stress. 

In the same manor the element nodal forces cor-
responding to a given displacement state can be 
found by 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 

 

( ) ( )
( )

( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
∞

+

−
∞

−=

11
10

,
1

                            

1
10

1
1,

1
,,

h
cc

g
e

sc
K

h
cc

g
e

sc
G

sc
h

e
w

αα

αα

αα

αααα

 (4) 

 
where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



The tangential stiffness matrix and the nodal 
force vector are now formulated on the basis of both 
the continuous and the discontinuous displacements. 

4 CONSTRAINTS 

The discontinuous displacement field is now con-
strained by requiring stress continuity at the crack.  

At each end of the crack, points C1 and C2, the 
stress continuity is fulfilled by demanding 

 
cr co

n n
σ σ=        cr co

ns ns
τ τ=                  (14) 

 
where superscripts co and cr indicate stresses in the 
continuum and in the crack, respectively. 

The result is 4 constraints on the original dis-
placement field. Instead of demanding stress conti-
nuity with both sides of the crack (resulting in a total 
of 8 constraints, of which 2 would be linearly de-
pendent) the remaining 2 constraints are applied to 
the discontinuous part of the displacements. The dis-
continuous part of the displacements can model dif-
ferent constant stresses in the continuum at each side 
of the crack. Therefore, for the discontinuous part 
the stress continuity between these two parts is ful-
filled by 

 
I IIco co

n n
σ σ=       I IIco co

ns ns
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Since the discontinuous part only models constant 

stresses in the continuum the constraints need only 
to be applied at one point as indicated by the mid-
point in Figure 2. In total this results in 6 constraints 
and thereby the 6 discontinuous displacements may 
be eliminated locally.  

The 6 constraints may be written as 
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Then the discontinuous displacements may then 

be found from the continuous displacements by 
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This relation may be used for the transformation 

from the continuous displacements used at the sys-
tem level to the displacements used at the element 
level 
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Applying this transformation the tangential stiff-

ness matrix may be formulated on the basis of the 
continuous displacements 

c T

T T=k T k T                             (19) 

 
Similarly the resulting element nodal force vector 

is found by 
 

c T
=q T q                                 (20) 
 
Now both the tangential stiffness matrix and the 

nodal force vector are formulated for a cracked ele-
ment, solely on the basis of the continuous dis-
placements. 

5 NUMERICS 

With the formulation of the tangential stiffness ma-
trix and the nodal force vector, the basis for solving 
the non-linear Equations is established. Since the ex-
tra degrees of freedom necessary to describe the 
crack opening is eliminated locally, no extra vari-
ables are needed at the system level.  

By assembly the global nodal force vectorQ can 
be established and the virtual work Equation stated 
as 

 

( )=Q V R                               (21) 

 
whereR is the global nodal load vector. This non-
linear Equation is solved iteratively applying the tan-
gential relation  

 

T =K V Rd d                             (22) 

 
where TK  is the global tangent stiffness matrix as-
sembled from element matrices, dV  is the global 
incremental displacement vector and dR  is the 
global incremental load vector. 

The element presented in the previous section is 
based on the LST, however, it allows for the forma-
tion of a displacement discontinuity or a crack. 
Thus, we have named the element “dLST”. The 
dLST has six nodes and twelve degrees of freedom, 
two at each node describing the displacement vector. 
The actual values of the discontinuous displace-
ments are calculated at the element level and there-
fore no global degrees of freedom are needed for the 
discontinuity description. 

A crack is formed if the principal stress in a point 
in the element exceeds the tensile strength. This may 
result in unrealistic situations since the element is ei-
ther uncracked or fully cracked. Therefore, when the 
tensile strength is exceeded in only a small part of 
the element and the element fully cracks, a part of 
the crack may close. In the present work the behav-
ior of the crack is extrapolated and small negative 
openings are accepted at the crack tip. 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 

 

( ) ( )
( )

( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
∞

+

−
∞

−=

11
10

,
1

                            

1
10

1
1,

1
,,

h
cc

g
e

sc
K

h
cc

g
e

sc
G

sc
h

e
w

αα

αα

αα

αααα

 (4) 

 
where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



In principle the crack is set to grow perpendicu-
larly to the principal stress direction, and, if possible, 
to be continuous between elements; however in the 
present work the direction is fixed. 

The nonlinear equilibrium Equations may be 
solved by standard FEM procedures such as arch-
length procedures. Here, however, a simple Newton-
Raphson algorithm with a sign change on the incre-
mental load when the direction of the path changes, 
has proven sufficient. The convergence criterion is 
based on the energy in the residual divided by the 
elastic energy of the first load step. 

6 EXAMPLE 

To illustrate the capabilities of the suggested ele-
ment a standard test namely the RILEM three-point 
bending test (Vandervalle 2000) is considered. A 
side view of the test setup is shown in Figure 4. The 
beam has a square cross-section and a 25 mm deep 
notch cut perpendicular to the bottom face in the 
mid-section plane; it is simply supported at the ends 
and loaded by a load acting vertically downwards at 
mid-span.  

The data for the concrete beam is given in Table 
1 and in Figure 5. The constitutive model for the 
crack is very simple and considers only Mode I be-
havior. The present example is governed by the 
opening of the crack and the Mode II behavior can 
therefore be disregarded. 

 

 
Figure 4. Geometry of the RILEM test beam with a 25 mm 
notch.  

 
 
For numerical reasons the shear stiffness of the 

crack is given a large artificial value.  
 
 

Table 1. Concrete material parameters. 

Parameter Value 

Young’s modulus, Ec 37.4 GPa 

Poisson’s ratio, νc 0.2 

Tensile strength, ft 3.5 MPa 

Fracture energy, Gf 160 J/m2 

 

 
Figure 5. Linear tension softening curve. 

 
The dLST element is tested against a benchmark 

calculation using interface elements (Asferg et al. 
2007a) which has been performed using the com-
mercial FEM code DIANA (Diana 2003).  

The suggested element with only local enrich-
ment can model several cracks but in the present ex-
ample the crack growth of a single crack at the mid 
plane is considered. 

The reference beam was modeled in a regular 
mesh with 48 elements over the height of the beam.  

For the dLST element regular meshes with 6 and 
12 divisions of the height of the beam are tested. 

The resulting load deflection curves can be seen 
in Figure 6. The deflection is measured at the center 
of the beam relative to a point 1

2
h above the support.  

The result for the coarse mesh captures the sof-
tening with a slight underestimation of the maximum 
load but with a non smooth load displacement path. 
This is due to the small number of elements and to 
the fact that the element cannot crack partially. For 
the finer mesh the maximum load level is captured 
somewhat better and due to the larger number of 
elements the load displacement path is clearly 
smoother. Considering the crude assumption that 
each element cracks at once when the tensile 
strength is exceeded in just one point the response is 
captured quite well.  

 

 
 

Figure 6. Load-deflection curves of the RILEM test beam with 
a 25 mm notch. Comparison between a DIANA model with 48 
interface elements over the ligament height, and two dCST 
models with unstructured meshes having 14 and 28 elements 
over the ligament height, respectively. 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  
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isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
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ratio, cement chemical composition, SF content, 
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etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
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paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



In Figure 7 the crack opening at a late stage for 
the 12x21 model is shown. The figure shows a rather 
smooth crack closure and some minor non-
conforming displacements at inter-element bounda-
ries.  

 
Figure 7. Element mesh for dLST model close to the notch, and 
a scaled deformation illustrating the crack opening at a late 
stage.   

7 CONCLUSION  

An element called dLST with a linear strain distribu-
tion in the continuum and a possible linear opening 
of the crack is formulated based on XFEM shape 
functions. The extra discontinuous displacements are 
directly eliminated by demanding stress continuity at 
the crack and therefore the element is only locally 
enriched and in fact an embedded crack element. 

In the setup of the virtual work, the work done by 
the unavoidable inter-element discontinuities is in-
cluded in order to suppress this non-conformity. 

The element is fairly simple and has the possibil-
ity of modeling multiple cracks. 

The preliminary results for the element presented 
here seem promising and a more detailed analysis 
awaits. 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  
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isotherm” if measured with increasing relativity 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k
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vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 
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temperature, and λ is the heat conductivity; in this 


	Main
	Return

