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ABSTRACT: The response of a bonded symmetric balanced double lap joint under tensile loading with a bi-
linear softening adhesive is described with a closed form solution. Since bonded joints in concrete structures 
undergo softening, a versatile model to describe the response for a wide range of constitutive relationships is 
needed. A constitutive relationship containing a bi-linear softening law contains such versatility. The solution 
was investigated for moderate and extreme softening parameters. The solution for extreme softening parame-
ters, exhibited a non-physical behavior, where the size of the stress-free crack decreased for increasing size of 
fracture process zone. This suggests that in order to fully describe the loading and unloading response, an 
unloading law should be implemented in the constitutive model. Apart from adhesively bonded metallic joints, 
the present solution may be used in analysis of cracked concrete disks strengthened with adhesive bonded fiber 
reinforced polymers (FRP), or in any other structure comparable to a double lap joint with a softening inter-
face. The present constitutive model can be changed to fit any model with the same shape of constitutive rela-
tionship, see Figure 1. 

1 INTRODUCTION 

1.1 General 

Since bonded lap joints in concrete structures often 
exhibit softening behavior, the prediction of the re-
sponse relies on the ability to model the softening in 
a constitutive law. In an analysis of FRP or steel 
bonded to a concrete surface, the typical softening 
law used is linear. Such a model rule out modeling of 
more complex softening branches obtained from 
tests. This could be exponential softening, sudden 
drops or ductile softening behavior. The ability to 
analyze the behavior of bi-linear softening adhesives 
in joints is important, since a simple bi-linear behavior 
can be used as approximation for complicated softening 
behavior experienced in tests. With a bi-linear softening 
relationship, it is possible to approximate both convex 
and concave descending softening branches. This paper 
analyzes a symmetric balanced double lap joint with a 
bi-linear softening adhesive using a simple joint the-
ory, first described in Volkersen (1938). Volkersen as-
sumed linear elastic materials, adhesive loaded and 
deformed in shear only and adherents allowing only 
axial deformation. Extensions to Volkersens model 
such as softening and hardening behavior have been 
proposed since, and a vast amount of work on stress 
analysis and bond and anchorage models exist based 

upon it. See as examples, Hart-Smith (1973), 
Ranisch (1982), Gustafsson (1987), Pichler (1993), 
Täljsten (1995), Chen & Teng (2001), Yuan et al. 
(2004). Many of these papers make use of a cohesive 
law or a bond-slip relationship as constitutive models 
since such data is easy to obtain from tests. How-
ever, in principle it is not important how the constitutive 
law for the interface material is defined since bond-slip 
or different softening shear moduli are just different 
ways of defining the same type of behavior. Ottosen & 
Olsson (1988) investigated the response of a symmetric, 
balanced double lap joint with linear hardening and sof-
tening using the same assumptions as in Volkersen 
(1938). Modeling of the adhesive was done traditionally 
using different shear modulus for the elastic and harden-
ing/softening stiffness. Some important parameters de-
scribing the failure of a joint with softening behavior 
were identified, and design strategies were suggested. 

This paper extends the solution by Volkersen and 
Ottosen & Olsson (1988) to include bi-linear soften-
ing. Focus is on calculation of the different stages a 
joint undergoes from first applied load to failure. The 
analysis results in explicit formulae for position of 
softening initiation at second softening branch, frac-
ture initiation and load at different softening stages. 
The easy access to such important data and the abil-
ity to understand and investigate all parameters is 
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motivation for analyses like this, instead of studies 
performed with a finite element model.  Examples 
are given in Section 4. 

2 GOVERNING DIFFERENTIAL EQUATIONS 

2.1 Materials 

The outer adherents are marked with a subscript 1 
and the inner adherent with 2. See  
Figure 2a. They are both assumed linear elastic with 
Young’s modulus E1 and E2. This results is the relations 
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where ε1, σ1 and ε2, σ1 denote the strain and stress in 
each adherent. The adhesive layer is described using 
a shear modulus Gx and a thickness ta. The subscript 
of the shear modulus is dependent on the adhesive 
strain and is defined in the linear elastic stage as: Ge 
for 0 < γ ≤ γs1, first softening stage as: Gs1 for γs1 < γ 
≤ γs2 and second softening stage as: Gs2 for γs2 < γ ≤ 
γf, where γs1 and γs2 denote the shear strain at soften-
ing initiation of stage one and two, and γf denotes the 
failure strain of the adhesive. The shear stress at on-
set of softening stage two is defined as τs2. See Fig-
ure1. 1. 
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Figure 1. Constitutive relationship. 
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Figure 2. a) Geometry, definitions and boundary conditions for 
a double lap joint. b) Deformed shape of joint. 
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Figure 3. Equilibrium, deformation and materials in a joint.  

 
The softening relationship is based upon a stress-

slip relationship and formulated as a stress-strain re-
lationship for convenience. This implies that the sof-
tening stress-strain relationship must be changed if 
the adhesive thickness is changed. 

2.2 Kinematic conditions 

The relationship between deformations and strain 
may be described when assuming small strains, by 
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where the different parameters are defined in Figure 3. 
The adhesive layer is assumed to be loaded and de-
formed in pure shear. 

2.3 Equilibrium 

The horizontal equilibrium is obtained by summation of 
all forces acting in the infinitesimal element, see 
Figure 3. Note that only half the element is shown. 
Equilibrium provides: 
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Since the shear stress τ is related to the shear 

strain γ by τ(x) = γ(x)Gx, we obtain by differentiation 
of this expression with respect to x and insertion of 
Equations (1)-(4). 
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Differentiation of (8) again and insertion of the 

equilibrium Equations (6) and (7) yields the differ-
ential equation 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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Figure 4. Schematic overview of the different stages a-g) dur-
ing bi-linear softening of a balanced joint: a) Elastic, b) Elas-
tic-softening(I), b*) Fully softening(I), c) Elastic-softening(I+II), 
c*) Fully softening(I+II), d) Onset of failure at Elastic-softening 
(I+II), e) Elastic-softening(I+II)-failure, f) Softening(I+II)–failure, 
g) Unloading. 

At x = -L/2 it is known that σ1 = P/(2t1w) and σ2 = 0, 
where t1 is the thickness, w is the width of the joint 
and P is the applied force. Insertion in Equation (8) 
and applying the same method for x = -L/2 where σ2 

= P/(2t2w) and σ1 = 0 yields 
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Since we are analyzing a balanced symmetric 

joint, E1t1 = E2t2, Equation (12) holds and we define 
the useful constant Qx. 
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In the forthcoming solutions we will only investi-

gate positive x-values since the joint is symmetric. 

3 JOINT ANALYSIS 

The response of the joint is calculated by using ap-
propriate boundary conditions and compatibility con-
ditions. The solution scheme will closely follow the 
stages a-g) shown in Figure 4, and at the same time 
explain the stage in question. 

3.1 a) Elastic stage(e) 

In stage a) the shear stress in the joint has not yet 
reached the maximum shear stress, τm. The solution 
for the governing Equation (9) is then given in the 
interval 0 ≤ x ≤ L/2 as 
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Due to symmetry of the hyperbolic sine function, 

C1=0 and the following boundary condition is applied: 
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The solution yields 
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The maximum force of this stage is obtained by 

setting τ(L/2) = τm and applying the expression for 
Qe, Equation (15). We obtain: 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 
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where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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w is the width of the joint. 

3.2 b) Elastic-softening(I) 

In stage b) the shear stress in the joint has reached 
the maximum shear stress, τm, at a point defined as 
xs1. The solution for the governing Equation (9) is 
of the same type as (13). Using the same symmetry 
condition as in a) and applying the boundary condition 
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the response of the structure is given in the interval 
 

0 ≤ x < xs1 as 
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The response in the interval xs1 ≤ x ≤ L/2 must be 

solved using differential Equation (9). The roots of 
the characteristic equation will be imaginary since Gs1 
and Gs2 are negative. The solution is given as 
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By applying boundary conditions 
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we obtain the solution 
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This solution is valid until the shear stress reaches τs2 

at a distance x = xs2, where the softening modulus 
changes. This distance can be found by iteration, de-
manding the expression in (21) equal to τs2 and 
solving for xs2 
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Qs1 is determined by applying a continuity condi-
tion at σ1 and σ2 for both the elastic and softening 
side of the solution in Equation (8). We obtain 
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From this relationship, it is now possible to solve 

for Qs1. 
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where the relationship Ge/Ge1 = -λe

2/λs1

2 has been 
used. The force is determined by Equation (12). 

3.3 b*) Softening(1) 

In stage b*) softening has reached xs1 = 0 before stage 2 
softening has begun. This phenomenon is usually 
seen in very short joints, or joints with a soft adhe-
sive. When the entire solution is defined to be in the 
softening region, the form of the solution is given in 
Equation (19). Using the same symmetry condition 
as in stage a) and applying the boundary condition 
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the response of the structure in the interval 0 ≤ x ≤ 

L/2 yields 
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3.4 c) Elastic-softening(I+II) 

In stage c) the interval 0 ≤ x < xs1 is still elastic and 
the solution in Equation (18) can be used.  

The interval xs1 ≤ x < xs2, where xs2 was deter-
mined from Equation (22), softening is in stage 1. 
Boundary the following boundary conditions are ap-
plied to the general solution, Equation (19) 
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The last interval xs2 ≤ x ≤ L/2 is in stage 2. This 

part of the solution is obtained by using the following 
boundary conditions in Equation (19) 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  

 

J•∇=
∂

∂
−

t

w
                              (2) 

 
The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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The response yields 
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To obtain the correct value for Qs2 and smooth 

transition between the two softening stages, the con-
tinuity between σ1 and σ2 in Equation (8) requires 
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Differentiating Equations (28) and (30), insert-

ing into Equation (31) we obtain 
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Solving for Qs2 and using the relationship in Equa-

tion (12) to solve for the force Ps2, gives 
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3.5 c*) softening(I+II) 

In stage c*) xs1 = 0 and stage 2 softening has begun, 
but failure near x = L/2 is not initiated. The whole 
joint is thereby in the softening state. 

The solution in the interval 0 ≤ x < xs2 may be cal-
culated by applying symmetry leading to C3 = 0. The 
other boundary condition in Equation (19) is 

 

( )2 2s s
x xτ τ= =                            (34) 

 
The solution yields 
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For xs2 ≤ x ≤ L/2 the solution in Equation (30) is 

still usable. 
The maximum force in the joint can be obtained 

using Equation (32), setting xs1 = 0. 

3.6 d) Elastic-softening(I+II), onset of failure. 

The solution for Stage d) is identical to the one in Stage  

c). This stage is however interesting since failure and 
growth of a macro (stress-free) crack begins at L/2. 
Growth of the macro crack is described in Section 3.7. 

The maximal load carried by the joint in this state 
is calculated by demanding τ(L/2) = 0 in Equation (30). 
Reducing the expression and solving for Qs2 gives us: 
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Applying Equation (12), the force in stage d) can 

be written as 
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To determine the maximal load at onset of failure, 

the distance xs2 corresponding to τ(L/2) = 0, has to be 
known. The solution for this case is not directly avail-
able in closed form, and is therefore obtained by it-
eration. A simple iteration scheme can be setup as 
follows. If we equate Equation (30) to 0 at L/2, we 
obtain the following expression: 
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This equation is used along with Equation (36) 

to calculate expressions for xs2, Pd and Qs2. xs1 can be 
obtained from Equation (28) to plot the full re-
sponse. 

3.7 e) Elastic-softening-failure 

The onset of the macro crack will start at x = L/2 
when τ = 0. A failed, stress free region will now start 
to grow from the end. The distance to this end is de-
fined as xf. This distance can be determined by first 
solving the differential equations, and secondly ap-
plying continuity conditions to parts of the solution. 

One part of the joint is still elastic in the interval 0 
≤ x < xs1 and the solution in Equation (18) is still 
usable. 

In the interval xs1 ≤ x < xs2, where xs2 was deter-
mined from Equation (22), the response can still be 
determined by Equation (28). 

Solution of the last interval xs2 ≤ x ≤ xf progresses 
as previously, where boundary conditions for solu-
tion of Equation (19) is 
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Here Qf is the first derivative of shear stress at xf. 

The solution yields 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 

 

( ) ( )
( )

( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
∞

+

−
∞

−=

11
10

,
1

                            

1
10

1
1,

1
,,

h
cc

g
e

sc
K

h
cc

g
e

sc
G

sc
h

e
w

αα

αα

αα

αααα

 (4) 

 
where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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To find the distance xf we must demand shear stress 

to be zero at xf. Inserting τ(xf) = 0 in Equation (40) we 
obtain the expression for Qf  to be 
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To obtain smooth transition between the two sof-

tening stages, the continuity between σ1 and σ2 in 
Equation (8) requires 
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Differentiating Equations (28) and (40), inserting 

Qf  from Equation (41) and rearranging, yields 
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where Gs2/Gs1 = λs2

2/λs1

2 has been used. The response 
in Equation (40) is then calculated at a value of xs1 by 
calculating xf from Equation (43) followed by de-
termination of Qf from Equation (41). It is then possi-
ble to calculate the response. The force can be ob-
tained by using relationship 
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3.8 f) softening(1+2)-failure 

In stage f), the distance xs1 has just reached zero and 
τ(0) = τm. In the interval 0 ≤ x < xs2 the response is 
determined from the same formula as in stage c*), 
Equation (35). 

In the interval xs2 ≤ x < xf, the solution from Equa-
tion (40) is still usable. 

The force at full softening is obtained by setting 
xs1 = 0 in Equation (43) and using (45). 

3.9 g) Unloading 

In stage g) the softening region will remain constant 
and the load will decrease linearly. When the bearing 

capacity is completely exhausted, the softened region 
will fail, Ottosen & Olsson (1998). This has also been 
shown in Yuan et al. (2004). The principle is shown in 
Figure 4g with a dotted line. A fully correct analysis 
of the unloading response requires a definition of the 
unloading response in the constitutive relationship. 

4 EXAMPLES 

Two examples are given to illustrate some of the fea-
tures and capabilities of this model. Some of these fea-
tures are discussed in Section 5. 

In the examples the slip is calculated at L/2 as 
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When a debonded, stress-free zone is present, the 

elastic elongation in adherent 1 must be added as 
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4.1 Moderate softening behavior 

Moderate softening behavior describes a joint where 
the absolute value of Gs1 does not differ much from 
Ge. Gs2 must not vary significantly from Gs1. The 
following constants have been chosen: L = 60; ta = 1; t1 
= 2; t2 = t1; w = 1; E1 = 100000; E2 = E1; Ge = 
30000; Gs1 = -20000; Gs2= -5000; τm = 5; τs2 = 1.5. 

Results are found in Figure 5 - Figure 6 

 
 

Figure 5. Shear stress distribution at different lengths of xs1. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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vg and k
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vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



 
Figure 6. Relative load as a function of relative slip at L/2. 

4.2 Extreme softening behavior 

Extreme softening behavior is defined by softening 
branches where at least one has a near vertical or 
horizontal inclination. This example has the following 
constants: L = 60; ta = 1; t1 = 2; t2 = t1; w = 1; E1 = 
100000; E2 = E1; Ge = 30000; Gs1 = -100000; Gs2= -
50; τm = 5; τs2 = 0.75.  

Results are found in Figure 7 - Figure 8. 

 
 

Figure 7. Shear stress distribution at different lengths of xs1. 
 

 
 

Figure 8. Relative load as a function of relative slip at L/2. 

 
When values of xs1 approach 0 the values of xf, 

may, in extreme cases, be seen to exhibit non-physical 
behavior, as it is the case with the current example. 
To obtain equilibrium in the solution, the combina-
tion of xs1, xs2 and xf is in Figure 9 seen to cause the 
onset of the stress-free crack to decrease. This is dis-
cussed further in Section 4.3 and 5. 

 

 
Figure 9. xf and xs2 as a function of xs1. Notice the special be-
havior of xf for small values of xs1.  

4.3 Parametric study, variation of Gs2 

A special observation was made when Gs1 differed 
from Gs2. At some values of Gs2, the length of xf 
would increase for decreasing values of xs1. A phe-
nomenon that is clearly non-physical, but neverthe-
less required by the solution. The behavior is shown 
in Figure 10. It is seen that xf will behave as expected 
and obtain lowest value at xs1 = 0 from Gs2 ≈ -20000 
and lower. Gs2 ≈ -20000 and higher, a peak error at 
around 4% on xf is present.  

Some variations on other parameters have shown 
to produce the same type of behavior. The subject is 
further discussed in Section 5. Material parameters 
for this case are: L = 60; ta = 1; t1 = 2; t2 = t1; w = 1; 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



E1 = 100000; E2 = E1; Ge = 30000; Gs1 = -30000; 
Gs2= -40000; τm = 5; τs2 = 1.5.  

 

 
 

Figure 10. Relative displacement as a function of the second 
branch softening modulus, Gs2. 

5 DISCUSSION AND CONCLUSION 

A bi-linear softening curve to describe the behavior 
of the adhesive has been implemented in the solution 
for a tensioned adhesive joint in pure shear using well 
known assumptions. The joint was modeled after the 
classic Volkersen (1938) theory, which in other cases 
has proven to work well with tests. See for instance 
Yuan et al. (2004), and Täljsten (2008) where a the-
ory based on Volkersen (1938) was used to evaluate 
the shear stress distribution in a strengthened steel 
plate. 

The closed form solution of the proposed problem 
has proven capable of predicting the response for 
both moderate and extreme values of softening pa-
rameters. The moderate softening parameters re-
sulted in a steady state delamination process with a 
almost constant fracturing load which ends up in a 
short unloading phase. Extreme softening parameters 
resulted in a peak-type load-slip response, followed 
by a short unloading phase. The failure shear strain 
was not reached in this case. A possible explanation 
for the load slip behavior might be found in Figure 9, 
where the onset of the stress-free crack is plotted. 
This point moves back through an already delami-
nated part of the crack at small values for xs1, which 
is not physically possible. This may disturb the solu-
tion somewhat. 

A parametric study showed a peculiar behavior of 
xf when some parameters were varied. This is in par-
ticular the case with variations of the inclination of 
the second softening branch, Gs2. Results showed 
that the calculated distance to the debonded zone did 
not decrease for all values of xs1, but instead increase 
near xs1 = 0. This solution is not physically allowable, 
but it is dictated by the equilibrium conditions and 
solution procedure. No final conclusions can be 
drawn from the initial study of this problem; however 
it is clear that the problem cannot be solved without 
a complete constitutive relationship for the adhesive 
describing the softening as well as the unloading be-
havior. A possibility for bypassing the problems 
caused by extreme softening parameters, is to derive 
the response of the joint as a function of displace-
ment in an adherent; e.g. direct modeling of a defor-
mation controlled test. 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k
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vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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