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ABSTRACT: An alternative strength model was developed for evaluating the punching shear strength of inte-
rior slab-column connections without shear reinforcement. The punching shear was assumed to be resisted 
mainly by the compression zone at the critical section, addressing the damage due to flexural cracking at slab-
column connections by flexural cracking In defining the punching shear strength, the material failure criteria of 
concrete was used. In the evaluation of the punching shear strength, the interaction between the shear stress 
and the compressive normal stress developed by the flexural moment of the slab was considered. The proposed 
strength model was verified by existing test specimens. 

1 INTRODUCTION 

A flat plate is susceptible to punching shear failure at 
its slab-column connection. The failure causes sig-
nificant degradation of the overall resistance of the 
structure, and thus the structure may collapse. Due 
to that, a lot of research efforts have been made to 
investigate the punching shear strength of slab-
column connections.  

Based on the results of research, so far, several 
design methods for slab-column connections have 
been developed, including ACI 318-05 (2005), CEB-
FIP MC 90 (1993), BS 8110 (1997), and Eurocode 2 
(2002). However, the current design codes differ in 
the definition of the shear strength and the location 
of the critical section of the slab-column connection. 
Figure 1 shows the punching shear strengths of test 
specimens obtained from FIP bulletin 12 (2001). As 
shown in the figure, ACI 318-08 shows the greatest 
deviations in the strength-predictions. ACI 318-05 
and CEB-FIP MC 90 greatly overestimated the 
punching shear strength for several specimens.  

Recently, Choi et al. (2007a) developed the strain-

based shear strength model to predict the one way shear 
strength of reinforced concrete slender beams. In the 
model, the shear strength was defined based on the ma-
terial failure criteria of concrete. By addressing the in-
teraction between the shear capacity and normal stress 
caused by the flexural deformation, the effect of the 
flexural damage was considered in the evaluation of the 
shear strength of beams. 

In the present study, the strain-based shear 
strength model was applied to the punching shear of 
slab-column connections. The applicability of the 
proposed model was verified by comparisons with 
existing test results. 

2 FAILURE CRITERIA OF CONCRETE 

Because a flat plate has a large span-to-thickness ra-
tio, the punching shear behavior is heavily dependent 
on flexural deformation. Usually, at its slab-column 
connection, flexural cracking occurs prior to punch-
ing shear failure (Farhey et al. 1997, Elstner & 
Hognestad 1953, Kotsovos & Pavlovic 1998). The 
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Figure 1. Punching shear strength-predictions for test specimen. 



proposed shear strength model was developed based 
on the shear-contribution of the compression zone.  

Figure 2 shows the three-dimensional stresses that 
develop in the compression zone of the critical sec-
tion of a slab-column connection: two orthogonal 
compressive normal stresses ( 1uσ  and 2uσ ) and two 
shear stresses ( 1uv  and 2uv ). The compression zone 
of the critical section is subjected to a combination of 
these compressive normal stresses and shear stresses. 
Therefore, the interaction between the stress compo-
nents must be considered to accurately evaluate the 
punching shear strength of the slab-column connec-
tion (Zaghlool & Rawdon 1973).  

In the present study, to develop a simplified de-
sign equation, two-dimensional compressive and 
shear stresses ( 1uσ  and 1uv ) acting on the cross-
section of the compression zone were considered.  

Addressing the failure mechanism of concrete 
(Chen 1982) subjected to the combined compressive 
and shear stresses, the maximum shear stress capac-
ity can be defined as a function of the compressive 
normal stress.  
for a failure controlled by compression. 
 

( ) ' [ ' ( )]nc c c uv z f f zσ= −            (1a) 
 
for a failure controlled by tension. 
 

( ) ' [ ' ( )]nt t t uv z f f zσ= +           (1b) 
 

Since the compressive stress in the compression 
zone, uσ , varies with the distance from the neutral 
axis, the shear stress capacity at each location in the 
compression zone is defined as a function of the dis-
tance from the neutral axis z . Throughout this pa-
per, compression and tension are defined with posi-
tive and negative signs, respectively. 
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Figure 3. Variations of normal stress according to curvature at 
a cross section. 
 

At a cross-section of a flexure-dominated mem-
ber, the distribution of compressive normal stress is 
affected by the curvature of the cross-section. Fig-
ures 3(a) ~ (b) show the variations of the curvature 
of the cross-section and the compressive normal 
stress. As the curvature of the cross-section, repre-
senting the degree of flexural damage, increases, the 
depth of the compression zone decreases, and the 
distributions of the compressive stress and shear 
stress capacities vary.  

The governing shear stress capacity nv  at a loca-
tion in the compression zone is defined as the mini-
mum of ncv  and ntv  in Equation (1). At most loca-
tions in the compression zone, except for the extreme 
compression fiber experiencing compression soften-
ing, nv  is determined as the shear stress capacity 

ntv  controlled by tension.  
 

1uσ
)(1 uu σσ

)(1 uu vv

tf '

Tensile 
failure

Compressive 
failure1σ

uσ

uv

uv−

N.A.
z

Actual three-dimensional 
stresses

Simplified two-dimensional 
stresses

1uv

cf '

1uσ

2uv
2uσ

2uσ 2σ

Figure 2. Principal stress failure criteria of concrete subjected to shear-compression. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



 
 

3 PUNCHING SHEAR CAPACITY AT CROSS 
SECTION 

The compressive stress is assumed to be parabolically 
distributed along the depth of the compression zone. 
The punching shear capacity nV  at a potential criti-
cal section can be calculated by integrating the gov-
erning shear stress capacity nv :  
 

( )n o nV b v z dz= ∫                            (2) 
 
where ob  = perimeter of the critical section at a 
slab-column connection. 
 

In Figure 3, before tensile cracking (Stage AB), 
the entire cross-section provides shear resistance. Af-
ter tensile cracking is initiated (Stage BC), the effec-
tive depth of the cross-section resisting the shear 
force decreases as the tensile crack propagates to the 
neutral axis. Because of this, the shear capacity de-
creases. After the tensile crack reaches the neutral 
axis (Stage CD), shear resistance is provided mainly 
by the compression zone. In Stage DE ( oo εαε > ), 
the part of the compression zone experiencing com-
pression softening no longer develops shear resis-
tance. 

4 PUNCHING SHEAR STRENGTH 

In the proposed strength model, the punching shear 
capacity of a critical section is mainly affected by the 
degree of flexural cracking and the perimeter of the 
critical section ob . Flexural cracking is most severe 
and the perimeter of the critical section reaches its 
minimum at the slab-column connection, and thus, 
the punching shear capacity is expected to reach its 
minimum. On the other hand, the punching shear 
demand reaches its maximum at the slab-column 
connection. Therefore, for a slab with uniform thick-
ness, the critical section can be determined as the 
cross-section having the minimum perimeter, which 
is close to the slab-column connection. 

The critical section for the proposed shear 
strength model was defined approximately as the rec-
tangular cross-section with the average perimeter ob  
of the truncated pyramid-shaped failure surface. 
Therefore, the cross-sectional area of the critical sec-
tion for punching shear design is defined as uocb , 
where ob  is the perimeter of the critical section, and 

uc  is the depth of the compression zone. ob  can be 
calculated by using the angle of the inclined punching 
shear crack: 
 

uo cccb ⋅++= φcot422 21 .             (3) 

For 34=φ  degrees, uo cccb ⋅++= 93.522 21 . 
1c  and 2c  are the edge lengths of a rectangular col-

umn-section. For circular cross-sections, an equivalent rec-
tangular cross-section with Dcc ⋅== )2/(21 π  is used 
(ACI 318-05), where D  is the diameter of the cir-
cular cross-section. 

In the present study, a simple design equation 
for the determination of the punching shear 
strength was developed to enable the proposed 
method to be used in design practice. If a design 
value for the maximum compressive strain 0αε , 
corresponding to the punching shear failure, is used, 
the punching shear strength of a slab-column connec-
tion can easily be calculated, without evaluating the 
shear demand curve. In the present study, based on 
the results of Kinnunen and Nylander’s study (1960), 

00196.00 =αε )1( ≈α  was used.  
The shear capacity of the compression zone was 

approximately evaluated by using the average com-
pressive stress σ  over the compression zone. σ  
can be simplified as cf ')3/2(=σ  by using 1=α . 
Further, by using ]')3/2([1 cf=≈σσ  and 2 'tfσ = − , 
the average tensile strength of the concrete over the 
compression zone is calculated as tt ff )3/2(' =  
(Choi et al. 2007b). Therefore, from Equation (1a) 
and (2), the punching shear strength of a slab-column 
connection can be simplified as  
 

uocttn cbfffV ]'[)3/2( += .            (4) 
 

According to Bažant and Cao (1987), and BS 
8110 (1997), the punching shear strength of a slab-
column connection is affected by the slab size. To 
address this size effect, the size effect factor sλ  
[ 4 /400 d=  mm] specified in BS 8110 was used.  

According to ACI 318-05 (2005) and Vanderbilt 
(1972), the punching shear strength of slab-column 
connections is also affected by the ratio of the pe-
rimeter of the critical section to the effective slab 
depth, dbo /  (or the ratio of column size to the ef-
fective slab depth, dc /1 ). In this study, to address 
the effect of dbo /  (or dc /1 ) on the punching 
shear strength, a modification factor boλ  was intro-
duced. To calibrate the proposed strength model, 52 
sets of test data selected from FIP bulletin 12 (2001) 
were used: Bernaert and Puech; Manterola; Yitzhaki; 
Moe. For the best fit, boλ  was defined as 

dbo //0.3 .  
Using sλ  and boλ , the punching shear strength 

of a slab-column connection can be redefined as 
 

uocttsbon cbfffV ]'[)3/2( += λλ ,          (5) 
 
where dbobo //0.3=λ  and           (6) 
 

4 /400 ds =λ  ( d  in mm)           (7) 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



5 VERIFICATION AND DISCUSSION 

The proposed strength model [Eq. (5)] was applied 
to specimens tested in previous studies. 197 speci-
mens from FIP bulletin 12 (2001).  

Figure 4 shows the predictions for the test speci-
mens excluding the specimens, which were used to 
calibrate the proposed model. The results showed 
that the proposed design method predicted the 
punching shear strengths of the test specimens with 
reasonable precision. In Figure 4, the ratios of the 
test results to the strengths predicted by the pro-
posed method range from 0.80 to 1.59. The mean 
value of the strength ratios was 1.20, with a standard 
deviation of 0.163. The proposed strength model 
showed better predictions than ACI 318-05, CEB-
FIP MC 90, and BS 8110 (See Fig. 1).  
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Figure 4. Strength-predictions for test specimen by proposed method. 

6 CONCLUSIONS 

At the slab-column connection of a flat plate, the ap-
plied shear force is resisted mainly by the compression 
zone of the intact concrete at the critical section, which 
is not damaged by flexural cracking. The compression 
zone of the critical section is subjected to the compres-
sive stress developed by the flexural moment, as well as 
by the shear stress. Therefore, the punching shear 
strength of the slab-column connection was defined by 
considering the interaction between the compressive 
stress and shear stress. The proposed strength model 
was applied to existing test specimens. The results 
showed that the proposed method predicted the test re-
sults with reasonable precision. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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