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Abstract. The present work describes a simple model, based on concepts of Fracture Mechanics,
to evaluate the diagonal tension failure load in reinforced concrete beams without stirrups. It is
developed by an analytical method that identifies the variables on which the diagonal traction failure
depends, with special attention to bond between concrete and steel bars. The beam collapse is caused
when a crack, which is developing through the beam cross section, reaches a certain depth which we
will refer to as the critical depth. This depth depends on the position of the section being studied, the
external load, the beam boundary conditions and the beam geometry. The presented model can help
to better understand the nature of the diagonal tension failure in reinforced concrete elements without
stirrups.

1 INTRODUCTION

The evaluation of diagonal tension failure
load (shear strength) in RC elements is a prob-
lem not satisfactorily solved within the scien-
tific and technological fields. A consensus over
a mechanical model which explains simply and
reasonably the behavior of the RC elements fac-
ing this type of failure and the influence of the
bond between concrete and steel has not been
reached so far. Nevertheless, the interest in this
subject is apparent in the hundreds of publica-
tions written on it in the last fifty years and the
proposed models have gradually increased their
performance when compared to the experimen-
tal results. The models to determine failure load
due to diagonal tension in elements without stir-
rups have evolved from hypotheses based on

empirical statistics [1] to truss models based on
plasticity [2–6].

A new perspective to analyze the problem
was introduced by Reinhardt in the eighties [7],
who stated that the models and formulas to de-
termine diagonal traction failure load should be
based on Fracture Mechanics. Indeed, the brit-
tle nature of diagonal tension failure, together
with the size effect observed in tests [8, 9] and
with the fact that failure is associated with crack
propagation through the concrete element [10],
suggest that the failure can be studied through
the theories generated within the framework of
fracture mechanics.

The proposed formulation assumes that di-
agonal tension failure is caused by the propa-
gation of flexural cracks. Beam failure occurs
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when a flexural crack reaches a certain depth,
which we call critical depth, that depends on the
crack position and on the boundary and loading
conditions. This failure criterion is based on ex-
perimental observations [10], and in the results
obtained with analytical models [11]. In these
investigations, it has been observed that cracks
initially progress in a stable manner. When one
of them reaches its critical depth, it becomes
to unstable, which means that the crack length
increases consuming only energy stored in the
spacimen, with no need of additional external
energy. As the model is based on Fracture Me-
chanics concepts, it reproduces the size-effect
observed in the experiments and the influence of
the variables that govern the failure, especially
the bond between the reinforcing bars and the
concrete matrix, the reinforcement ratio and the
mechanical properties of steel and concrete.
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Figure 1: Bending analysis: a) plain concrete section; b)
reinforced concrete section

2 MODELING SHEAR CRACK PROPA-
GATION

A three point bending beam (TPB) is con-
sidered where a vertical crack grows at a point
in the shear span. The different geometric vari-
ables relevant to the problem are displayed in
Figures 1 and 2. The beam has a depth h, a
width b and a shear span equal to l, (which is
the horizontal distance between the load point
and the closest support). The depth of the crack
is represented as z and the reinforcement cover
as c. All these dimensions can be expressed in a

nondimensional way dividing by the depth h. In
this manner we define ξ = z

h
as the nondimen-

sional depth and ζ = c
h

as the steel concrete
cover expressed in nondimensional form; these
parameters have a value between 0 and 1. We
will also consider two additional parameters,
which are the slenderness of the shear span, that
is defined as λ = l

h
, and another one that indi-

cates the distance of the crack to the beam sup-
port, α = x

l
, where x is the horizontal distance

from the crack to the support.
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h
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Figure 2: Beam geometry: a) plain concrete; b) rein-
forced concrete.

During the crack growth a damage zone is
generated at the crack front. This zone is called
Fracture Process Zone (FPZ ), shown in Fig. 1.
As a simplification, in our model it is consid-
ered that tension is constant along the FPZ .
The value of the total traction force, Tc, that
is generated in the cohesive zone is equal to
the area of the FPZ by the concrete tensile
strength. The size of this zone can be expressed
relative to the depth of the element through
Bažant’s law [12]. The traction load can be
nondimensionally expressed as shown in Eq.
(1). The traction force is considered to be situ-
ated at the centroid of the FPZ, z, see Fig. 1a.
So, Eq. (1) reads as:

T ∗
c =

Tc

bhfct
=

FPZ

h
=

(1− ξ)√
1 + βH

β0

, (1)

2



Jacinto R. Carmona and Gonzalo Ruiz

where βH is the named Hillerborg’s brittle-
ness number [13], which is defined as the ratio
between the depth of the beam, h, and the ma-
terial characteristic length, ℓch, which is defined
as ℓch = Ec GF

f2
ct

, where Ec is the elasticity mod-
ulus of concrete, GF is the fracture energy and
fct is the tensile strength. β0 is a constant re-
lated to the aggregate size. In our case, the study
was carried out taking twice the maximum ag-
gregate size divided by ℓch [14]. In order to
apply Bažant’s law, we consider that the value
of the tensile strength is approximately equal to
the value of tensile strength for a 0-size speci-
men. βH is used as a comparison parameter for
size effect.

Equation (1) indicates that for small values
of βH , FPZ occupies all the uncracked liga-
ment and for high values of βH the FPZ must
be very short in relation to the beam’s depth.
With the aim of simplifying the model, it is con-
sidered that the the compression force is located
at the top of the beam. As will be explained
later, this simplifying assumption does not in-
troduce a significant error at failure.

Bending moment for a certain crack depth
can be evaluated by multiplying the compres-
sion force, Tc, by the distance between the mid-
point of the FPZ and the upper part of the sec-
tion (h− z) as shown in Fig. 1a.

M∗
c =

Mc

bh2fct
= T ∗

c (1− ξ) =
(1− ξ)2√
1 + βH

β0

. (2)

The bending moment is also equal to the re-
action at the support multiplied by the distance
to the crack, see Fig. 2a. As the reaction in the
support is equal to the shear in a TPB beam, we
can state:

Mc = V x = V αλh =⇒ M∗
c = V ∗

c αλ. (3)

Substituting Eq.(3) in (2) we obtain the
shear, which is expressed as:

V ∗
c =

Vc

bhfct
=

1

αλ

(1− ξ)2√
1 + βH

β0

. (4)

Concrete elements are usually reinforced by
steel bars located to resist tension. The rein-
forcement introduces a new force, Ts, in our
section, as shown in Fig. 1b. The value of this
force, Ts, is equal to the steel area, As, multi-
plied by the tension in the bars, σs (Eq. (5)). The
force in the reinforcement can be expressed in
dimensionless form by dividing it by the section
area and the concrete tensile strength:

Ts = Asσs =⇒ T ∗
s =

Ts

bhfct
=

Asσs

bhfct
= ρσ∗

s ,

(5)
where ρ is the reinforcement ratio and σ∗

s is
the tension in the reinforcement expressed in
non-dimensional form. As mentioned before,
to simplify the model we opt for maintaining
the compression force located on the top of the
cross section. In the range of steel-ratios for
which the shear failure occurs, the resultant of
the compression forces is close to the top and,
thus, our assumption is reasonable since the er-
ror in the calculated failure load is small. Con-
sidering the above discussion, the value of the
bending moment for a defined crack depth z can
be written as:

Mt = Mc +Ms = Tc(h− z) + Ts(h− c). (6)

Re-writing Eq. (6) in non-dimensional form:

M∗
t = M∗

c +M∗
s =

(1− ξ)2√
1 + βH

β0

+ ρσ∗
s(1− ζ).

(7)
Finally, using Eq. (3), the shear can be ex-

pressed as:

V ∗
t =

Vt

bhfct
=

1

αλ

 (1− ξ)2√
1 + βH

β0

+ ρσ∗
s(1− ζ)

 .

(8)
It should be noted that Eq. (8) indicates that

the shear is the sum of two terms. The first
one depends on the concrete material proper-
ties, whereas the other one depends on the rein-
forcement ratio, on the tension in the steel bars
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and on the concrete cover. The sum of these
terms is multiplied by another term which takes
into account the slenderness and the crack front
position in the beam. All of the values in (8),
are known but the steel tension.

To evaluate the steel tension during crack
growth we need to pose an additional equation
by enforcing the compatibility of displacements
between concrete and steel, which implies that
the crack opening is equal to the stretching of
the reinforcement bars. It is assumed that the
traction force of the reinforcement is equal at
both faces of the crack, as shown in Fig. 3 and
Eq. (9). Other compatibility equations could be
considered, for example, based on the Navier
hypothesis or depending on the crack opening,
as done in [15]. Nevertheless, in this work we
have selected Eq. (9) because it allows to in-
clude bond between concrete and steel as a vari-
able in the problem. It is written as:

∆lωc

lb=
σsAs

peτc

c

τc

∆l=
σs

2Es
lb

Figure 3: Compatibility of displacements

ωc

2
= ∆l, (9)

where ωc is the crack opening and ∆l is the
stretching of the steel bar. We consider that steel
is elastic-plastic and, so, once the tension in
the reinforcement reaches the tensile strength,
fy, it remains constant during crack propaga-
tion. Equation (9) can be expressed in a non-
dimensional way by dividing both terms by the
depth of the beam:

ωc

2h
=

∆l

h
=⇒ ω∗

c

2
= ∆l∗. (10)

The non-dimensional crack opening, ω∗
c , can

be evaluated by the expression given by Tada,
Paris and Irwing [16]. An additional term, 1− ζ

ξ
,

to take into account the concrete cover has been
introduced:

ω∗
c

2
=

ωc

2h
= 12αλV ∗

t

fct
Ec

ξ f(ξ)

(
1− ζ

ξ

)
,

(11)
where f(ξ) is equal to:

f(ξ) = 0.76−2.28 ξ+3.87 ξ2−2.04 ξ3+
0.66

(1− ξ)2
.

(12)
The stretching of the bar (Fig. 3) can be ex-

pressed by:

∆l∗s =
∆ls
h

=
σ2
sAs

2τcEspeh
= (σ∗

s)
2 f 2

ct

2τcEs

As

peh
,

(13)
where τc is the bond strength between steel

and concrete, which is considered constant
along the adherence length, and pe is the bar
perimeter. Substituting Eqs. (11) and (13) in
Eq. (10) we obtain that the non-dimensional
tension on the reinforcement can be expressed
as:

(σ∗
s)

2 = 24V ∗
t αλ η2 βH ξf(ξ)

(
1− ζ

ξ

)
,

(14)
where η is the non-dimensional bond defined

by Ruiz [15], which can be written as:

η =

√
n
τc
fct

peℓch
As

. (15)

Where n is the ratio between the elastic
modulus of steel and that of concrete. Non-
dimensional bond strength has a value that
varies between 15 for smooth bars to 50 for
ribbed (adherent) bars.

To evaluate the shear force and the tension
in the steel bars we finally have a system of
two equations, Eq. (8) and Eq.(14), which can
be solved analytically. When the reinforcement
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traction reaches the yield strength, the shear
strength is obtained just from Eq. (8).

It should be noted that the proposed model
is valid for low and medium reinforcement ra-
tios. For high ratios the failure is caused by
excessive compressions below the load bearing
point, and studying this type of failure is out-
side of the scope of the paper. Finally, we as-
sume that a crack may form at any point along
the shear span, which is specially true for ribbed
reinforcement.
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Figure 4: Failure criterion, experimental results: a) crack
patterns; b) P − δ curves

3 FAILURE CRITERION
Equation (8) indicated the shear force for

crack propagation, Vt, but shear failure, VF , will
occur only for a definite crack depth. This depth
will be referred from here as critical depth,
ξcrit. A criterion to determine ξcrit can be de-
rived from experimental observations. We base
it on the experimental results carried out by Car-
mona, Ruiz and del Viso [10]. This experi-
mental program was designed so that only one
single mixed-mode crack generated and propa-
gated through the specimen, as opposed to the
usual dense crack pattern found in most of the
tests reported in the scientific literature. In Fig.
4 we show two of the results that will help to
explain the failure criterion.

Figure 4a shows the crack patterns in two
of the tests. The marks and figures on the
sketch refer to the corresponding points in the
P − δ curves, as shown in Figure 4b, and to
the load in kN that the beam was standing when
the crack tip reached that position. During the
crack progress, a change in the nature of the
crack propagation was observed and a subse-
quent unstable crack branch began leading to
the beam failure. This phenomenon was associ-
ated with the so-called diagonal tension failure.
This change in the nature of crack propagation
can be observed in point C of beam L40 and
point D of beam L80. These points shown in
Figure 4a, are approximately located on the line
that joins the loading point with the point where
the reinforcement reaches the support. This line
coincides with an ideal strut that connects the
loading point to the support. These experimen-
tal observations were also assumed in an analyt-
ical model proposed by Carpinteri Ventura and
Carmona [11]. Therefore, for three point bend-
ing flexure, the critical depth is defined by the
line connecting the loading bearing point to the
point where the reinforcement reaches the sup-
port. Mathematically it can be expressed as fol-
lows:

ξcrit = ζ + α(1− ζ). (16)

This failure criterion is associated with three
point bending flexure, but can be easily general-
ized for any boundary and load conditions. For
example for a simply supported beam subjected
to a uniformly distributed load, the bending mo-
ment diagram variation is parabolic with a max-
imum at midspan. The critical crack variation
will be also parabolic. At the maximum bend-
ing moment point the critical crack is equal to
the beam depth, and in the support is equal to
the cover, please see Fig. 5b.
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Figure 5: Failure criterion: a) three point bending; b) uni-
formly distributed load

Therefore, we propose that the critical depth
be related to the bending moment diagram:
For the maximum bending moment position the
critical depth is equal to the beam depth (ξcrit =
1), and when the bending moment is equal to
zero the critical depth is equal to the reinforce-
ment concrete cover. In between, the critical
depth is proportional to the value of the bend-
ing moment at that position.
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α
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0

 

Figure 6: Crack shape

4 CRACK SHAPE
So far we have considered that cracks grow

in a vertical manner from the initiation point. In
reality, cracks have curved trajectories approxi-
mately following the lines indicating the direc-
tion of the maximum compression. This effect

means that the initial abscissa of the crack, α0,
is not the same that the abscissa of the crack
tip when it reaches the critical depth, α. In or-
der to consider this mismatch, equations defin-
ing trajectory patterns can be used, as shown on
Eq.(17). These equations were proposed in ref-
erence [11].

α(ζ, ξ) =


α0 (∗)

α0 +

(
ξ − ζ

1− ζ

)µ

(1− α0) (∗∗)

(∗) 0 ≤ ξ ≤ ζ
(∗∗) ζ ≤ ξ ≤ 1

(17)
The above formula assumes a straight trajec-

tory from the initiation point to the reinforce-
ment; and a parabolic trajectory which reaches
the load bearing point. Through Eq. (17), a rela-
tion between the crack depth ξ and the initiation
point, α0, is determined. For tree point bending,
exponent µ is equal to:

µ =
1

1− α0

. (18)

This equation was obtained from the experi-
mental tests performed by Carpinteri, Carmona
and Ventura [17]. The failure criteria for curved
cracks remain the same as for straight cracks:
Once the critical depth is reached the element
fails (Fig. 6).

5 RESULTS AND DISCUSSION
5.1 Model response and experimental vali-

dation
In this section it will be shown how the value

of the initial crack position, α0, affects the shear
strength. A beam under three point bending is
modelled. Figure 7 shows the geometry and
material properties. It is supposed that cracks
grow in a vertical manner. The x-axis rep-
resents the non-dimensional depth, ξ, and the
y-axis the non-dimensional shear strength dur-
ing crack growth, V ∗

t . A curve is determined
for each crack initiation position. It is well
known that the crack growth may present stable
or unstable behavior. When the crack growth
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is stable, an increase in the crack depth re-
quires a load increase to fulfil the model equa-
tions. Conversely, unstable crack growth leads
to load decrease. If we observe the curve for
α0 = 0.2, after crack initiation, an unstable
branch is observed. When the crack reaches
the reinforcement a jump in the load is detected
and, afterwards, another unstable branch takes
place. There exists a minimum beyond which
growth becomes stable. From this point on,
shear increases until the reinforcement yields
and the flexural capacity of this beam section
is reached.
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f         (MPa) y 0,2% τ  (MPa)cE  (GPa)c

519 200 3.3

0

1

Figure 7: Model response: a) Geometry and materials
properties; b) Vt–ξ curves

The behavior obtained with the model is
analogous to the one described by Carpinteri
as a shear version of his Bridged Crack Model
[18]. The black part of the curve describes the
shear resistance variation during the crack pro-
cess until critical depth is reached, as shown in
Fig. 7b. The point where the crack front reaches
the critical depth indicates the shear failure or
shear strength.

For cracks which form closer to the support,
we observe that the failure occurs prior to rein-
forcement yielding (brittle failure, diagonal ten-
sion), whilst for the ones away from the support,
the failure occurs after reinforcement yielding
(flexural failure). It was observed that once the
reinforcement has yielded, there can also be a
brittle failure, just as shown by Muttoni, Ro-
drigues and Ruiz. [19]. In case the crack is
located under the loading point, as the criti-
cal depth is equal to the depth, a brittle failure
caused by diagonal tension cannot occur.

To validate the model’s response, we have
compared the results obtained with those of
a recent experimental program performed by
Carpinteri, Carmona and Ventura [17]. Sixteen
geometrically similar beams, reinforced with 4
different reinforcement ratios where tested, see
Fig. 8a. In this experimental program the initial
position and the shape of critical cracks were
studied for different reinforcement ratios. The
bond strength between concrete and steel was
not measured in the experimental program and,
so, it has been estimated using the formulation
established in the Model Code (CEB-FIB). The
resulting value is 3.4 MPa. The continuous lines
represent the model’s response while the sym-
bols represent the experimental results.

Figure 8b shows the comparison between
theoretical and experimental results. X-axis
corresponds to the initial position of the cracks,
whereas y-axis represents the shear when the
crack reaches the critical depth (shear strength),
V ∗
F . To facilitate the comparison some crack

patterns of the tests are drawn at the bottom of
the figure. These crack patterns are scaled 50%
in the vertical axis.
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Figure 8: Model response: a) Beam geometry; b) experi-
mental results vs. model, VF –α0 curves

To describe the model’s response we are go-
ing to focus on the curve corresponding to a
beam reinforced with 2ϕ12, starting from the
section corresponding to the load application
point (α0 = 1). For the crack under the loading
point, the rebar yields before the crack reaches
the critical depth and the failure is by flex-
ure. Distancing the initiation of the crack from
the bearing point, we observe that the shear
strength increases, since the reinforcement gets
more load and may even yield before the criti-
cal depth is attained. For a certain point, αY , a
maximum value on the curve is detected. This
maximum indicates the point at which the re-
bar reaches its yield strength exactly at the same
time that the crack reaches the critical depth.
For values of α0 lower than αY the rebar has
not yielded when the crack tip reaches the crit-
ical depth and the beam failure occurs by diag-
onal tension. The shear strength decreases un-
til reaching a minimum for a certain initiation
point, situated in our case for α0 = 0.4. This
minimum has also been found in experimen-
tal results, as Kim and White reported in ref-
erences [20, 21]. For cracks with an initiation
point closer to the support, the shear strength
starts to increase although the the critical depth
is low. It should be noted that the actual shear
strength of the beam has to be the smallest shear
found varying α0.

The shape of the curve obtained with the
model, showing a minimum in the central part
of the shear span, fits the description proposed
by Kani and Wittkopp [22]. In the zone near
to the support we find an area where the failure
is produced by yielding of the rebars (flexure);
but if we move away from the support along the
shear span the failure occurs during the devel-
opment of a crack (diagonal tension). In some
conditions there also can be a failure due to di-
agonal compression close to the support, this
type of failure is not considered in the model
though.

Figure 8 shows that for low reinforcement ra-
tios (e.g. 1ϕ8) the failure take place in sections
near the loading point, where the steel reaches
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the elastic limit before the crack grows to the
critical depth. Upon increasing the reinforce-
ment ratio, the critical section moves away from
the load application point to positions where
the steel does not yield. The experimental ten-
dency is captured by the model and even the
shear loads obtained match quite reasonably the
experimental ones. More over, the model ex-
plains the “valley” in the shear resistance along
the beam longitudinal axis. In the results ob-
tained for the largest reinforcement ratio (2ϕ20)
the differences between the model and the ex-
periments are conditioned by the type of fail-
ure, since in highly reinforced beams the failure
is produced by excessive compression and not
by diagonal tension.

5.2 Size effect
Figure 9 shows the model’s response when

varying the element size. We compare the re-
sponse for two different values for the crack ini-
tiation: One which starts at the middle of the
shear span, α0 = 0.5 (diagonal tension fail-
ure), and the other for the crack produced un-
der the load point, α0 = 1.0 (flexural failure).
The mechanical properties for this example are
the same as those used in beam with 2ϕ12 re-
inforcement from the previous section. The
x-axis represents the element size in terms of
the Hillerborg’s brittleness number. The usual
range of this parameter in structures is indicated
with two vertical lines. The y-axis represents
the shear strength.

For the crack located at α0 = 0.5 there exists
a strong size effect, i. e. the shear strength de-
pends on the element size, which is caused by
the existence of a fracture process zone in the
crack front. For the asymptotic behavior, the
curve presents a 0-slope curve, that is size effect
disappears as much with smaller sizes than with
bigger ones. For the crack located at α0 = 1.0,
shear strength does not present any size effect,
since the reinforcement yields before the crack
reaches the critical depth and the tractions in
the FPZ do not contribute much to the ultimate
load. The results obtained with the model coin-
cide with the experimental observations in those

cases where the flexural failure involving rein-
forcement yielding does show an effect of scale,
whereas in the diagonal tension failure this size
effect is indeed noticeable.

V
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structural
dimensions
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0.6

0.9

1.2

0.0001 0.01 1 100

α0=0.5
α0=1.0

Figure 9: Size effect

5.3 Bond effect

Figure 10 shows the model response for vari-
ations in the bond between concrete and steel.
It represents the crack depth versus the shear
that produces crack propagation. We modeled
the beam reinforced with 2ϕ12 shown in section
5.1. When bond is increased, the crack depth
for which the steel yields decreases. For low
bond strength conditions (smooth bars) cracks
have to develop fully before the steel yields. In
the case of high adherence (ribbed bars), steel
yielding occurs shortly after the crack crosses
the rebar.
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Figure 10: Bond influence: a)Vt–ξ curves; b) VF –α0

curves

In Fig. 10b, x-axis displays the initial crack
position and y-axis the shear shear strength.
When the bond strength increases, the value of
αY decreases and the shear strength increases.
In the extreme case of the bond strength hav-
ing an infinite value, the element fails by flex-
ure because, for all possible cracks, the steel
yields just after crossing the rebar position and,
therefore, before reaching the critical depth.
Fig. 10b also shows that the minimum of the
curve moves towards the support as the bond
strength increases. Low values for the bond
strength lead to low values for the failure loads,
even lower than the load that is required for
fracture initiation in that particular point, Vfis.
This means that the diagonal tension failure
would be very unlikely for beams in which the
steel to concrete interface is weak. Indeed,

in this case there would be cracks only un-
der the load bearing point and there would not
be crack generation nor propagation along the
shear span. So, in such conditions the shear fail-
ure would not occur.

6 CONCLUSIONS

In this work we presented a model based on
fracture mechanics concepts for studying shear
strength in reinforced concrete beams without
stirrups. The model shows the relation which
exists between crack propagation and failure.
For the model, we proposed a failure criterion
based on the crack growth. When the crack
reaches a definite depth, which we refer to as
critical depth, the beam failure takes place. This
critical depth depends on the type of loading,
the boundary conditions and the beam geome-
try.

The proposed model identifies the variables
that govern the failure, including the bond be-
tween concrete and steel. We also showed that
the load for which the crack reaches the criti-
cal depth depends on the point where it initi-
ates, besides the concrete and steel mechanical
properties and the geometry of the beam sec-
tion. The model explains the shear resistance
variation in the cross section along the shear
span, showing a minimum around the mid shear
span. This fact connects with experimental ob-
servations made, among others, by Kani and
Wittkopp [22].

The model reproduces the size effect that has
been experimentally observed. It also explains
the differences between the size effect in flexu-
ral and shear failures and describes their respec-
tive asymptotic behavior.

The theoretical development presented here
can be used to study concrete elements for other
load and boundary conditions. It can help to
a better understanding of the nature of shear
strength in reinforced concrete elements with-
out stirrups. Finally expressions derived from
this study could be used to improve shear anal-
ysis of RC beams in design Codes.
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