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Abstract: A two-scale numerical homogenization scheme for a description of the 2D behaviour of 
concrete under bending was proposed. At the meso-level, concrete was described with the discrete 
method (DEM), and at the macro-level with the finite element method (FEM). The average stress 
response of a discrete micro-structure was obtained in each macroscopic Gauss point of the FE 
mesh as the result of the macroscopic deformation history imposed on the representative volume 
element (RVE). Discrete element simulations were performed with concrete specimens under 
compression and tension. In addition, three-point bending laboratory tests were carried out on 
notched concrete beams of a different size wherein the influence of the mix type, aggregate shape, 
volume of aggregate, aggregate size and sieve curve was investigated. The width and shape of a 
fracture process zone (FPZ) and crack width were measured using the digital image correlation 
(DIC) technique. 
 
 

1 INTRODUCTION 
To realistically capture the fracture 

behaviour of concrete, its micro-structure 
should be taken into account. However, when 
modelling micro-structure using FEM, a huge 
number of finite elements and computational 
effort are required. To practically solve this 
problem, multi-scale computational 
homogenization approaches are applied which 
are aimed at calculations of material properties 
at a global level using the data from different 
lower material levels. In a two-scale approach 
[1], the material behaviour is simultaneously 
studied at two scales: 1) at the meso-level, 
where the material micro-structure is 
considered and 2) at the macro-level, where 
the material is treated as a homogeneous one. 
The modelling procedure computes a stress-
strain relationship at every integration point of 
the macro-structure by detailed calculations of 
micro-structure attributed to that point. Thus, 
any constitutive assumption at the macro-level 

is not needed.  
Our paper considers a two-scale numerical 

homogenization scheme for a description of 
the 2D behaviour of concrete beams under 
bending. At the micro-level, the structure was 
described with the discrete method (DEM) by 
assuming rigid interacting discs with contact 
moments and cohesion [2]. At the macro-scale 
level, a numerical solution was obtained with 
the finite element method (FEM) with the aid 
of the tangent stiffness matrix calculated 
directly from a discrete concrete behaviour. 
The average stress response of discrete micro-
structure was obtained in each macroscopic 
Gauss point of the FE mesh as the result of the 
macroscopic deformation history imposed on 
the representative volume element (RVE). In 
addition, the acoustic tensor was calculated at 
the Gauss points [1], which is the best 
indicator for the unstable material behaviour 
[3]. 

In parallel, comparative three-point bending 
laboratory tests were carried out on notched 
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concrete beams of a different size [4], [5]. The 
influence of the mix type, aggregate shape, 
aggregate volume, aggregate size and 
aggregate distribution was investigated. The 
width and shape of both a fracture process 
zone (FPZ) and crack above the notch were 
measured using a digital image correlation 
(DIC) technique which is an optical way to 
visualize surface displacements by successive 
post-processing of digital images taken at a 
constant time increment from a professional 
digital camera [4]. In addition, a size effect 
phenomenon was experimentally investigated. 

2 TWO-SCALE FORMULATION 

2.1 Meso-scale formulation 
The concrete at the meso-scale was 

simulated as a set of N polydisperse discs, 
with diameters between 0.5 mm and 16 mm. 
All grains interact via linearly elastic normal 
and tangential Mohr-Coulomb law [6] with 
cohesion: the normal contact force nf  is 
related to the normal interpenetration δ of the 
contact as n nF k δ= , where nk  is the normal 
stiffness coefficient. The tangential component 

sF  of the contact force is proportional to the 
tangential elastic relative displacement with 
the tangential stiffness coefficient sk . The 
Mohr-Coulomb (fig.1) condition 

max| | | |s s nF F F tgμ< +  and min| |n nF F>  

requires an incremental evaluation of 
sF  in 

each step ( max
sF  is cohesion, min

nF  is the 
tensile resistance and μ is the inter-particle 
friction angle). A normal viscous component 
opposing the relative normal motion of any 
pair of grains in contact was added to the 
elastic force nF  to obtain a critical damping of 
the dynamic system when equilibrium states 
were computed. 

2.2 Macro-scale formulation 

A quasi-static finite strain continuum 
formulation was considered at the macroscopic 
level. The constitutive response at this level 
was obtained directly from DEM computations 
in the representative element volume (REV). 

For a given history of the macroscopic 
deformation gradient F, the macroscopic 
Cauchy stress σ resulted from microscopic 
grain forces through the formula written in 
terms of the Piola-Kirchhoff stress P. 
 

 
 

Figure 1: Mohr-Coulomb’s law assumed  
for discrete calculations. 

 
The effective constitutive behaviour was 

formally expressed as 
( ) { ( ), [0, ]}tt tτ τ= Γ ∈P F .                            (1) 
We assumed that for any given history of F 

till time t, P(t) admitted the right time 
derivative  

0
( ) ( )

t
t t tlim

tδ
δ
δ

•

→
+ −

=
P PP                          (2) 

and that the right-sided derivative 
•

P  depended 

on the right time derivative 
•

F  only that is 

( )
••

= ΨP F .                                                     (3) 
The function Ψ  is generally non-linear 

with respect to its argument
•

F . For a given rate 
of the deformation gradient , assuming that 
Ψ  is differentiable at , one could determine 
the material tangent moduli as 

|iJ
iJkL

kl

D
F

• •

•

•
=

⎛ ⎞ ∂Ψ
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⎝ ⎠ ∂
0

0

F F
F ,                                 (4) 

where the capital indices refer to Lagrangian 
variables and small indices refer to Eularian 
ones, respectively. 

At the macroscopic scale, finite elements 
were employed to solve the homogenized 
problem. When an incremental linearization 
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procedure was adopted for the obtained non-
linear problem, the constitutive function Ψ  
and its derivatives were evaluated numerically 
in each integration (Gauss) point. During each 
time step, from t to t+ Δ t, in every Gauss 
point, the increment of the deformation 

gradient Δ F=
•

F Δ t was transmitted to the 
microstructure. As the result of DEM 
computations, the Piola-Kirchhoff stress 

( )t t+ ΔP  was returned to each Gauss point 
and the corresponding stress rate was 
computed as 

( ) ( )( ) t t t
t

• + Δ −
Ψ =

Δ
P PF ,                              (5) 

giving the discrete version of the constitutive 
function Ψ  in Eq.3. A second step in the 
integration procedure at the level of a 
macroscopic Gauss point concerned the 
computation of the material tangent moduli 

iJkLD  needed in a typical Newton-Raphson 
algorithm. Since the derivatives in the Eq.4 
involve the function Ψ  which is itself 
computed as a derivative in Eq.5, the tangent 
moduli should be computed in two steps. For 

the given 
•

F , we first computed ( )iJ

•

Ψ F  (Eq.5). 
This corresponded to the increment of 

deformation gradient Δ F=
•

F Δ t. Then, we 
considered the perturbed increments of the 
deformation gradient * kL kL

kLF F tΔ = Δ + εΔ Δ , 
where kLΔ is the second-order (two-point) 
tensor such that all its components were equal 
to 0 except the kL one which was equal to 1, 
and ε  was a small perturbation parameter. 
Following again Eq.5, we computed 

( )iJ k
d kL

L

•

+ εΔΨ F . Next the computations were 
performed for all different values of k and L 
(i.e. 4 computations in 2D case). Finally, the 
results of these two steps allowed for the 
computation of the material tangent moduli 

( ) ( )d d
kL k

kL
iJ iJ

JkL
L

iD ε
ε

• •

Ψ + Δ − Ψ
=

F F             (6) 

as a discrete version of Eq.4. This procedure 
was performed in each time step and in each 
Gauss point of the macroscopic finite element 

discretization. The RVE size was calculated 
according to the procedure described by 
Skarżyński and Tejchman [7]. 

3 TWO-SCALE RESULTS 
The combined FEM-DEM method was 

implemented in the FEM code ‘FlagsHyp’ [8] 
that involved several significant code 
modifications. For the initial tests, the 2D 
quadratic element with four Gauss points was 
chosen. A very simple mesh with 4 elements 
was used. At the microscopic level, in DEM 
calculations, the number of aggregate grains in 
the REV cell was 400 in order to reduce the 
computation time. According to the stability 
studies [9], the variation step f=0.1 and 
perturbation e=2e-5 where chosen. The two-
scale tests were performed without cohesion 
between grains. Initially, REV was assigned an 
isotropic stress state by compression at the 
mesoscopic scale under a kinematic control up 
to a certain stress. Accordingly, the stress state 
at the integration point in the FE element was 
equal to the microscopic stress. An initial two-
scale numerical test was performed by 
modelling a typical laboratory biaxial 
compression test with free dilatancy of a pure 
aggregate specimen (concrete without 
cohesion). A constant pressure σ0 was applied 
to lateral sides, while the top was displaced 
downward. Using the symmetry of the 
problem, only the upper left quarter of the 
specimen is taken into account. The case with 
a smooth bottom in Fig.2 shows typical a 
biaxial compression response with hardening, 
peak and softening on the stress-strain curve 
and volumetric strain curve exhibiting initially 
small contractancy and then strong dilatancy. 
The calculated results from the two-scale 
FEM-DEM analysis are similar to pure 
discrete ones. In turn, the response of the 
specimen in the case with a frictional bottom is 
significantly perturbated on the specimen ends 
(the lower and earlier peak stress and delayed 
dilatancy) and departs evidently from the pure 
discrete response. This was expected, since the 
latter belongs definitely to a heterogeneous 
boundary value problem at the macroscopic 
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scale and differs essentially from the 
elementary response given by the DEM. 
 

 
a) 

 
b) 

 
Figure 2: Stress-strain curves (a) and volume 

changes (b) from comparative two-scale 
computations and discrete calculations during 

biaxial compression test. 

4 DISCRETE RESULTS FOR 
CONCRETE USING DEM 

First, the numerical 2D calculations (using 
the program YADE (Kozicki and Donze [10], 
Kozicki et al. [11]) were carried out with 
typical quasi-static laboratory tests for 
concrete: uniaxial compression and uniaxial 
tension. During compression, the specimens 
10×10 cm2 were analyzed (Fig.3a). In turn, 
during tension the specimens in the form of so-
called ‘dog-bones’ were used (height 15 cm, 
bottom and top width 10 cm and mid-part 
width 6 cm (Fig.3b). The aggregate shape was 
circular , its area was 55% and its range varied 
between 0.5 mm and 16 mm. The Poisson’s 
ratio and Young’s modulus of the grain 
contact were taken as ν=0.2 and E=380 GPa, 
respectively.  

The discrete results of uniaxial compression 
were compared to the experiments by van 

Mier [12] (Figs.4a and 5a). In turn, the discrete 
results of uniaxial tension were compared to 
the experiments by van Vliet and van Mier 
[13] (Figs.4b and 5b). The numerical cohesion 
was taken as 2.5 MPa and tensile resistance 
1.25 MPa (compression), and 1.0 MPa and 0.5 
MPa (tension), respectively.  
 

 
 

Figure 3: Geometry of concrete specimens 
under uniaxial compression and tension. 

 
A satisfactory agreement between 

calculations and experiments was achieved 
with respect to the stress-strain curve and 
specimen fracture (vertical cracks during 
compression and horizontal cracks during 
tension).  

Figure 6 demonstrates the effect the 
aggregate distribution in concrete with the 
compressive strength of about 15 MPa. The 
minimum aggregate diameter was 2 mm, 1 
mm and 0.5 mm, whereas the maximum 
aggregate diameter was 16 mm (mean 
aggregate diameter d50 was 4.5 mm, 4 mm and 
3 mm). The calculated strength and material 
ductility increase with increasing mean 
aggregate diameter. 

The influence of the loading velocity on the 
dynamic macroscopic stress-strain diagram for 
concrete with the compressive strength of 
about 15 MPa is depicted in Fig.7 (the vertical 
loading velocity varied between 0.0025 mm/s 
and 25 mm/s). During dynamic uniaxial 
compression (Fig.7a), the strength and 
material ductility increased with increasing 
loading velocity that was in agreement with 
laboratory tests. However, during dynamic 
uniaxial tension (Fig.7b), this effect did not 
occur that was opposite to experiments. This 
problem merits further investigations. 
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a) 

b) 
 

Figure 4: Comparison between discrete 
calculations and experiments [12], [13] during 

uniaxial compression (a) and  
uniaxial tension (b). 

 

 
              a)                                       

 
 
                                                          b) 
 

Figure 5: Calculated fracture at failure  
of concrete specimens during uniaxial 

compression (a) and uniaxial tension (b) from 
discrete simulations. 

 

 
                                      a)                   

                 b) 
 

Figure 6: Influence of mean aggregate 
diameter d50 on stress-strain diagram during 

uniaxial compression (a) and tension (b) from 
discrete simulations (curve ‘1’ - d50=4.5 mm, 
curve ‘2’ - d50 =4.0 mm, curve ‘3’ - d50=3.0 

mm). 

5 OWN EXPERIMENTS 

5.1 Experimental set-up 

Three-point bending laboratory tests carried 
out on concrete beams of a different size D×L 
with free ends were carried out (D – beam 
height, L=4D – beam length) (Fig.8).  

The beams were geometrically similar: 
small size beams 80×320 mm2 medium size 
beams 160×640 mm2 and large size beams 
320×1280 mm2. The beam thickness was 
always 40 mm. The beam span was equal to 
3D. A notch of the height of D/10 mm and 
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width of 3 mm was located in the middle of 
each beam bottom. The geometry of the beams 
was the same as that assumed in laboratory 
tests by Le Bellěgo et al. [14]. The tests were 
performed with a controlled notch opening 
displacement velocity (or crack mouth opening 
displacement CMOD rate) of 0.002 mm/min. 
This type of control allowed for obtaining a 
gradual displacement increase and a steady 
strength decrease in a post-peak regime. A 
CMOD gauge was located below the beam 
notch. 
 

 
a) 

 
b) 
 

Figure 7: Influence of loading velocity on 
stress-strain diagram during compression (a) 

and tension (b) from discrete simulations. 
 

Several different concrete mixes were 
composed of ordinary Portland cement (CEM 
II/B-S 32.5R), water and sand (mean aggregate 
diameter d50=0.5 mm, maximum aggregate 
diameter dmax=2.0 mm) or gravel (mean 
aggregate diameter d50=2.0 mm, maximum 

aggregate diameter dmax=16 mm). The water to 
cement ratio was 0.5. Two volumes of 
aggregate were assumed, namely 45% and 
70%. Rounded-stone-shaped aggregate and 
crushed-stone-shaped aggregate were used.  
The beams were cut out from the same mix 
block. In experiments, the digital camera 
Canon EOS-1Ds Mark II with a powerful 16.7 
megapixels CMOS sensor was applied. It was 
mounted on the tripod with its axis 
perpendicular to the photographed specimen 
surface. The concrete beams were initially 
carefully polished, then painted white. After 
that a spackle pattern (serving as a tracer) was 
put on this surface using the yellow spray. 
During the experiments, the width of FPZ was 
also measured with a CMOD gauge placed 
under the notch. The length resolution of 
images was 100 pixels/mm. 

 
 
Figure 8: Geometry of experimental concrete 

notched beams subjected to three-point 
bending [4], [5]. 

5.2 Experimental results 

A fracture process zone was always 
strongly curved and may even create branches 
(Fig.9). The measured width of FPZ changes 
between 3.55 mm in sand concrete 
(≈1.75×dmax) and 4.84 mm (≈0.3×dmax) in 
gravel concrete (with the volume of rounded-
stone-shaped aggregate V=45%). 

A localized zone was always created 
before the peak on the vertical force–
horizontal CMOD diagram (Fig.10). It 
developed during a deformation process until a 
discrete macro-crack was created at the 
deflection of u/D=0.004.  
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The FPZ width (sand concrete, volume of 
rounded-stone shape aggregate 45%) increased 
due to concrete dilatancy up to wc=3.55 mm in 
the range of CMOD=0.02-0.07 mm. Its 
formation rate was strongly non-linear caused 
be a heterogeneous concrete structure. The 
length and height of a localized zone above the 
notch were lc=65 mm and hc=46 mm 
(hc/D=0.575) at CMOD≈0.07 mm, 
respectively (Fig.11). 
 

a) 

 

b) 

Figure 9: Localized zone directly above notch 
in experiments with concrete notched beams 
based on horizontal normal strain (vertical and 
horizontal axes denote coordinates in [mm] 
and colour scale strain intensity): a) sand 
concrete, b) gravel concrete 

5.3 Size effect 

Figure 12 shows a measured size effect for 
gravel concrete beams (d50=2.0 mm, dmax=16 
mm, V=70%) geometrically similar. In 
addition, the results following the size effect 
law by Bažant [15] (being valid for structures 
of a similar geometry with pre-existing 
notches or large cracks) and experimental 

results by Le Bellěgo et al. [14] were enclosed. 
All results have a similar trend. 
 

 
 
Figure 10: Formation of localized zone and 
macro-crack on vertical force P – CMOD 
diagram (• - appearance of localized zone, ■ - 
appearance of macro-crack) 

6 CONCLUSIONS 
The combined DEM-FEM computations 

with a numerically calculated tangent stiffness 
matrix provide realistic results for simple 
loading cases in spite of the occurrence of 
several unstable points. The results are similar 
to those obtained from DEM computations and 
qualitatively similar to the corresponding 
laboratory tests. They give certainly a faster 
response for large boundary value problems 
than DEM. 

The DEM method is a reliable numerical 
tool for describing the meso-behaviour of 
concrete. It can be used for the detailed study 
of a fracture process at the aggregate level.  

The Digital Image Correlation technique is 
a very effective optical technique to determine 
the displacement field on the surface of 
concrete with a high accuracy and without any 
physical contact with the surface. 

The width and length of a localized zone 
on the concrete surface of notched beams non-
uniformly increased during a deformation 
process before a macro-crack formed due to a 
heterogeneous concrete composition. The 
maximum width of a localized zone was 3.55 
mm in a sand concrete beam (≈1.75×dmax) and 
4.84 mm (≈0.3×dmax) in a gravel concrete 
beam at the length resolution of 100 pixels per 
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mm. The maximum ratio between the height of 
a localized zone and effective beam height was 
approximately 0.6. Α macro-crack occurred in 
a softening regime for displacements about 
two times larger than at the peak load. 

The nominal strength of notched concrete 
beams during three-point bending increased 
with decreasing beam height and beam span. 
 

 

 

 
 

 
 
Figure 11: Evolution of width wc and length lc 
of localized zone against CMOD in 
experiments with notched beam of fine-

grained concrete based on DIC (× - maximum 
vertical force Pmax, • - formation of macro-
crack) 
 

 
 
Figure 12: Calculated and measured size 
effect in nominal strength 1.5Pl/(bD2) versus 
beam height D for concrete beams of a similar 
geometry: a) our laboratory experiments, b) 
experiments by Le Bellěgo et al. [14], c) size 
effect law by Bažant [15]. 
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