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Abstract. The paper introduces a novel material model which includes the effects of dynamic
strength increase of concrete. The model is based on the physical assumption of combined vis-
cous effects and a retarded damage approach. Furthermore, this model is implemented in a Finite-
Element-Method with implicit time integration and applied to numerical investigations of concrete
bars exposed to impulse loading and wave propagation, respectively. Particular cases of direct tensile
wave propagation and furthermore spallation of bars due to tensile failure are investigated with special
respect to the dynamic tensile strength increase, dynamic failure mechanisms and crack energy.

1 INTRODUCTION

Strength of concrete may exceed quasistatic
values in case of high strain-rates caused by
high velocity loading such as impacts or ex-
plosions. This effect was experimentally val-
idated in a number of experimental investiga-
tions [2], [9]. It may have a considerable influ-
ence on the behavior of concrete structures and
lead to an increased dynamic load bearing ca-
pacity compared to the quasistatic case. While
the so called lateral confinement may contribute
to an increased compressive strength, the in-
crease of tensile strength must be caused by
physical mechanisms regarding the concrete’s
material structure. Two different physical phe-
nomena are involved according to the current
state of knowledge. While low strain rate ef-
fects are dominated by moisture and the move-
ment of water in the different capillary sys-
tems of concrete [12], the damage at high strain
rates appears to be dominated by inertia effects
of micro-cracking [11], [4]. The micro-cracks
cannot propagate arbitrarily fast as a displace-
ment of internal crack faces relative to their im-

mediate surrounding is involved. This leads to
a retardation of crack propagation or retarded
damage, respectively. A suitable framework is
given with continuum mechanics and concepts
of elasticity, viscosity, damage and plasticity. In
order to compute the behavior of structures a
macroscopic approach is appropriate.

A number of proposals have been published
for stress-strain relations to incorporate the
strain-rate effect. A majority modifies strength
parameters as have been determined under qua-
sistatic conditions by dynamic strength increase
factors according to experimental results, see,
e.g., [8]. These are phenomenological ap-
proaches and do not consider physical mech-
anisms. Approaches based on viscoelasticity
or viscoplasticity have been proposed by, e.g.
[1]. Direct modifications of damage parameters
ruled by the strain-rate were proposed by, e.g.,
[14]. First concepts of retarded damage used in
stress-strain relation were given by [4], [6].

The following paper bases upon the latter
works and combines damaged viscoelasticity
with a retardation of damage to develop a gen-
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eral triaxial material law including the strain-
rate effect. A key point is given with the reg-
ularization of the softening material behavior
with the gradient damage approach and its ex-
tension with respect to retarded damage.

The paper is organized as follows: Section 2
develops the material law as a an ordinary dif-
ferential equation combining stress and strain
and their rates. This is incorporated in a Finite-
Element-Method combined with a Newmark-
Method for temporal discretization as described
in Section 3. It is applied to two particular
cases of wave propagation: tensile wave prop-
agation with continuously increasing loading in
Section 4 and spallation with a moderate com-
pressive amplitude reflecting as tensile wave in
Section 5. Finally, some conclusions are given
in Section 6

2 THE CONSTITUTIVE LAW
2.1 Quasistatic part

The constitutive law bases upon isotropic
damaged elasticity

σ = (1−D)E · ε (1)

with the stress tensor σ, the strain tensor ε, the
linear isotropic elasticity tensor E with an ini-
tial Young’s modulus E0 and Poisson’s ratio ν0

as parameters. Scalar damage is measured by
D with a condition 0 ≤ D ≤ 1. Damage
depends on a loading history. A strain based
approach is chosen relating the strain state ε
with an equivalent damage strain κ by a re-
lation F (ε, κ) = 0. Furthermore, a relation
D = D(κ) connects damage D and the equiv-
alent damage strain κ. Finally, Kuhn-Tucker
conditions F ≤ 0, Ḋ ≥ 0, Ḋ F = 0 with
the time derivative Ḋ of D distinguish load-
ing from unloading states. The exact forms of
F (ε, κ), D(κ) are given in [5]. The approach
introduces several material parameters beneath
E0, ν0. These parameters rule nonlinear uniax-
ial stress-strain behavior and multiaxial strength
properties.

The incremental form of Eq. (1) is given by

σ̇ = (1−D)E · ε̇− Ḋσ0, σ0 = E · ε (2)

with the time derivatives σ̇, ε̇, Ḋ of σ, ε, D.
This is splitted into volumetric and deviatoric
parts

σ̇ = σ̇vol + σ̇dev (3)

whereby

σ̇vol = K0

[
(1−D)ε̇vol − Ḋ εvol

]
σ̇dev = 2G0

[
(1−D)ε̇dev − Ḋ εdev

] (4)

with the initial bulk modulus and shear modulus

K0 =
E0

3(1− 2ν0)
, G0 =

E0

2(1 + ν0)
(5)

Due to D = D(κ) the time derivative Ḋ is con-
nected to the time derivative κ̇ of the equivalent
damage strain, which in turn is connected to ε̇
by Ḟ = 0 in case of loading [5].

2.2 Viscosity
The strain rate effect in the lower strain rate

range is covered by a viscous approach. It is
applied to the deviatoric part of Eq. (4). The
general form for three parameter viscoelasticity
is given by [10]

σ̇dev = q1 ε̇
dev + q0 ε

dev − p0 σ
dev (6)

The Maxwell model will be used in the follow-
ing leading to coefficients

q1 = 2(G0 +G1), q0 =
2G0G1

η1

, p0 =
G1

η1

(7)

The shear modulus G0 corresponds to Eq. (5).
The shear modulus G1 and the viscosity η1

come into effect with larger strain rates. A high
strain rate or high viscosity leads to a higher re-
sulting shear stiffness temporarily approaching
G0 + G1. The viscoelastic approach Eq. (6) is
extended with

σ̇dev = (1−D) q1ε̇
dev − Ḋ q1ε

dev

+(1−D)2q0ε
dev − (1−D)p0σ

dev (8)

to describe damage. This particular form is cho-
sen to include the quasistatic form Eq. (3) as a
special case. The superposition with σ̇vol ac-
cording to Eq. (4) is straightforward and leads
to a relation for σ̇ depending on ε, ε̇, D, Ḋ and
furthermore on εdev,σdev.
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Figure 1: Three parameter models for viscoelasticity.

2.3 Gradient damage
A damage material law given by Eq. (1) is

characterized by a maximum stress or strength,
respetively, followed by a softening, i.e. de-
creasing stresses with increasing strains. This
leads to localization phenomena within struc-
tures. Usage of such a law within numeri-
cal methods requires a regularization to avoid
a fundamental mesh sensivity. The gradient
damage approach will be used in the following.
Thus, a nonlocal equivalent damage strain κ̄ is
employed within this setting which is related
to the local equivalent strain κ by a differential
equation

κ̄(x)− cκ ∆κ̄(x) = κ(x), cκ =
R2

2
(9)

with the Laplace differential operator ∆ and a
characteristic length R. A given field κ(x) with
highly localized values in a narrow band will
lead to a field κ̄(x) localized in another band
whose width is controlled by the value of R.
Regarding the stress-strain law Eq. (1) of a ma-
terial point in a position x the value κ̄ replaces
κ upon deriving damage D.

The parameter R is a measure of the ma-
terial’s heterogeneity and assumed as a mate-
rial constant. An approximately linear relation
can be derived between R and the crack energy
Gf [6]. This is used to choose appropriate val-
ues for R.

Retardation of damage is assumed as another
contribution to the strain rate effect beneath vis-
cosity. This is modeled by an extension of
Eq. (9) with an inertial like part with the second
time dervative of the nonlocal equivalent strain
¨̄κ and an mass-like parameter mκ [6]

mκ ¨̄κ(x) + κ̄(x)− cκ ∆κ̄(x) = κ(x) (10)

A model is given with Fig. 2 with a row of
springs in parallel each with stochastically vary-
ing strength. This yields the uniaxial stress
strain behavior with limited strength and sub-
sequent softening. It is extended with inertial
masses which sustain forces in a short time pe-
riod in case of spring failure. This effect is ruled
by the value of mκ which is assumed as another
material parameter for the strain rate effect be-
neath G2, η2.

Basic Damage Model Retarded Damage Model

Figure 2: Models for damage and retarded damage.

3 THE NUMERICAL METHOD
Dynamic equilibrium of a structure is de-

scribed by the virtual work principle∫
V
δuT · ü ρdV +

∫
V
δεT · σ dV

=
∫
V
δuT · b dV +

∫
At
δuT · t dA (11)

with the Cauchy stress σ, body forces b, spe-
cific mass ρ, acceleration ü, virtual displace-
ments δu, corresponding virtual strains δε, sur-
face tractions t, the body’s volume V and that
part of surface At with prescribed tractions.
Boundary conditions are defined as prescribed
displacements u on surface part Au and as sur-
face tractions t on a surface part At.

This has to be complemented with a weak
form for the differential equation (10) relating
κ̄ to κ. It is given by [6]∫
V
δκ̄ ¨̄κ mκdV +

∫
V
δκ̄ κ̄ dV

+
∫
V
∇δκ̄ · ∇κ̄ cκdV =

∫
V
δκ̄ κ dV (12)

with the nabla operator∇ and a virtual variation
δκ̄. Boundary conditions for nonlocal fields are
still on open research issue. According to a
widely accepted approach a zero normal deriva-
tiven · ∇κ̄ = 0 of the nonlocal equivalent dam-
age strain is assumed.

Eqns (11,12) form a base to apply the Finite-
Element-Method. The fields of displacements
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u(x) and nonlocal equivalent damage strains
κ̄(x) are used as independent variables. They
are spatially discretized with(

u(x)
κ̄(x)

)
= N (x) ·U (13)

with a matrix N (x) of shape functions and a
vector UI collecting nodal values of displace-
ments and nonlocal equivalent strains. The spa-
tial derivatives are given by(

ε(x)
∇κ̄(x)

)
= B(x) ·U (14)

with a matrix B(x) of nodal derivatives of
shape functions. Applying standard meth-
ods of discretization on Eqns. (11,12) using
Eqns. (13,14) leads to system of nonlinear ordi-
nary differential equations of 2nd order depend-
ing on time t

M · Ü + f(U) = p(t) (15)

with the generalized mass matrix M , the ac-
celeration Ü of nodal variables, the generalized
internal nodal forces f nonlinearily depending
on the nodal variables U and the nodal loads p
depending on time t.

Temporal discretization of this system is
performed with the implicit Newmark-Method.
This requires the evaluation of the tangential
stiffness [6]

K =
∂f

∂U
(16)

and leads to scheme
1

β∆t2
M ·

[
U i − Û i

]
+Ki · [U i −U i−1]

= pi − f i−1
(17)

with a time step ∆t, a time ti = i∆t, further-
more U i = U(ti), Ki = K(U i), pi = p(ti),
f i−1 = f(ti−1) and

Û i = U i−1 + ∆t U̇ i−1 (18)

+
∆t2

2
(1− 2β) Ü i−1 (19)

Ü i =
1

β∆t2

[
U i − Û i

]
(20)

U̇ i = U̇ i−1 + ∆t
[
γÜ i (21)

+(1− γ)Ü i−1
]

(22)

and integration parameters chosen with β =
1/4, γ = 1/2 as a necessary requirement for nu-
merical stability. The system of algebraic equa-
tions (17) nonlinearly depending on U i may be
solved with a Newton-Raphson method while
proceeding time step by time step.

This completes the discretization. Applica-
tion examples for wave propagation problems
and plane strain beams under impact actions are
described in [7]. Two special cases will be con-
sidered in the following: propagation of a uni-
axial tensile wave along a bar to discuss dy-
namic strength increase factors and reflection
of a uniaxial compressive wave at a bar’s end
as tensile wave leading to spallation to discuss
aspects of dynamic crack energy.

4 UNIAXIAL TENSILE WAVE PROPA-
GATION

We consider a linear elastic bar with Young’s
modulus E and a specific mass % exposed to
uniaxial wave propagation. Its left end is given
with a coordinate x = 0 and a right end with
x = L and L = 1m. A discretization with for
node axis symmetric plane elements with an el-
ement length of Le = 3mm and a time step ac-
cording to the wave speed within the element
∆t = 0.7 · 10−3ms is chosen for the for the
numerical computations. Aspects of an appro-
priate selection are discussed in [7].

A tensile stress wave with a constant strain
rate ε̇0 is induced on the left end with prescrib-
ing the left end displacement u0 depending on
time t

u0(t) = −1

2
ε̇0 c · t2, t ≥ 0 (23)

with a uniaxial wave speed c =
√
E/% leading

to a left end stress

σ = E ε̇0 · t (24)

A sequence of stress waves along the bar for
several times is shown in Fig. 3 for E =
36000 MN/m2, % = 24 kN/m3 for a concrete
grade C40 according to [3] and ε̇0 = 1 s−1. The
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linear elastic stress waves are characterized by a
constant slope according to the prescribed strain
rate ε̇0. The tensile strength of concrete will
obiviously be reached after a short period.
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Figure 3: Linear elastic tensile wave propagation with
constant strain rate ε̇ = 1 s−1.

The course of stress waves changes if a non-
linear material behavior with limited strength is
assumed according to Section 2. An example is
given with Fig. 4 where the Visco-Elastic Re-
tarded Damage approach (VERD) was used for
the same concrete grade as before with material
strain rate parameters mκ = 1 · 10−12s2, E2 =
E, η2 = 2.8 · 10−8.
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Figure 4: Nonlinear tensile wave propagation (VERD)
with constant strain rate ε̇ = 1 s−1.

This starts with the same behavior as in
the linear elastic case. The initial linear elas-
tic state is followed by a nonlinear harden-
ing state whereby tensile stresses considerably

exceed the quasi static tensile strength fct =
5.5 MN/m2 due to viscosity and gradient re-
tarded damage. The material achieves a max-
imum dynamic tension and switches into the
softening branch.

These basically applies to all material points
along the bar but at different times and with a
different extent due to nonlinear wave propaga-
tion. Furthermore, the actually achieved strain
rates apart from the left bar end differ from the
prescribed nominal value ε̇0 because of the non-
linear material behavior. Finally, a strain local-
ization occurs in the left end bar region with
maximum values at x = 0. This is mesh inde-
pendent due to the regularization approach. Us-
ing this setup a variety of associated values of
stress, strain and strain rate can be determined.
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Figure 5: Uniaxial stress-strain relations (VERD) at dif-
ferent strain rates.

This leads to uniaxial stress-strain curves
which are parametrized by the strain rate. Ex-
amples are shown in Fig. 5 for the viscoelas-
tic retarded damage approach (VERD). First of
all, a higher stress i.e. a higher strength exceed-
ing the quasi static tensile strength is reached
for higher strain rates. Furthermore, the initial
Young’s modulus also increases due to the ac-
tivation of the additional stiffness E2 in case of
higher strain rates, see Fig. 1 ‘Maxwell’.

For a comparison the computed uniaxial
stress-strain curves for retarded damage with-
out viscosity (ERD) are shown in Fig. 6. The
achieved stresses are lower for the same strain
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rate compared to VERD but still considerably
exceed the quasi static tensile strength. On the
other hand, the initial Young’s modulus remains
unchanged as no additional stiffness is activated
with the material model according to Fig. 2
alone. Experimental data which might validate
this particular effect are rare and show a large
scatter.
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Figure 6: Uniaxial stress-strain relations (ERD) at differ-
ent strain rates.

More credible experimental data are avail-
able for the maximum achieved tensile stress or
dynamic tensile strength, respectively, varying
with the strain rate. This leads to the dynamic
strength increase factor (DIF) as the relation be-
tween dynamic strength and quasistatic strength
depending on the strain rate.
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Figure 7: Experimental and computed dynamic tensile
strength increase factors.

A comparison of experimental and computed
DIF-data is shown in Fig. 7 in a double loga-
rithmic scale. Approximately a bilinear course
is given. The dynamic material parameters
were chosen with the same values as before.
This choice approximately reproduces the DIF-
recommendations of the CEB-Modelcode [3]
with the computed values. Other choices might
lead to a better approximation of experimental
values.

5 SPALLATION

5.1 Basic relations

Up to now the variations of strength and
Young’s modulus were discussed under high
strain rate conditions. Another issue concerns
the crack energy. Crack energy may be defined
as energy dissipated in the process of macro
crack creation. This energy is widely accepted
as material constant under quasi static condi-
tions.

An appropriate setup to determine the crack
energy under high strain rate condition is given
by the spallation experiment. A uniaxial com-
pressive stress wave is induced on the left end
of a bar of length L. It is assumed as half sine
shaped and its maximum stress value is far be-
low the compressive strength but considerably
above the tensile strength. On the right end it
is reflected as tensile wave. In case of linear
elastic wave propagation the reflection process
is characterized by stress shapes as shown in
Fig. 8, i.e. upon reaching the right end the stress
amplitude reduces, goes through zero and in-
creases to its original value with reversed sign.

During the reflection process the right end of
the bar, which initially has a zero displacement,
is moved to the right. The associated velocity
is shown in Fig. 9 varying with the same time
t. The time of the maximum velocity corre-
sponds to the time when the stress wave passes
through zero, see Fig. 8. Upon velocity reduc-
tion the amplitude of the stress wave increases
as has been described before. Thus, a relation
can be derived between velocity reduction and
stress amplitude.
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Figure 8: Reflection of compressive stress wave as tensile
wave on free end.

Such a relation basically also holds in case of
a material with limited tensile strength. In case
when the tensile stress wave amplitude reaches
the uniaxial tensile strength a fragment of the
bar will break apart on the right end and will
start to fly away in the right direction. This oc-
curs at a time t1 whose value is needed for later
calculations. The velocity of the right end of
the fragment will than stop its decelaration and
holds some remaining value, see Fig. 9.
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Figure 9: Reflection of velocity wave on free end.

The absolute difference between this value
and the maximum velocity is called pull-back-
velocity ∆vvp. A relation between the pull-
back-velocity and the corresponding stress am-
plitude or dynamic uniaxial tensile strength ft,d
is given by

ft,d =
1

2
% c∆vvp (25)

with the specific mass % and the wave speed c.
This relation serves to determine values of the
dynamic tensile strength ft,d in spallation exper-
iments.

Assuming a linear elastic tensile behavior up
to the moment t1 of tensile failure for a given
stress wave and given value ∆vvp also allows to
calculate the spatial point x1 where the failure
occurs, i.e. the fragment length. Furthermore,
the velocity v(x, t) along the fragment may be
computed for the time t1 leading to an impulse

I1 =

∫ L

x1

v(x, t1) %Adx

≈ 1

2
%A(L− x1) [v(x1, t1) + v(L, t1)]

(26)

A analogous relation holds for a later time t2
when a macro crack has fully developed in the
cross section x1 leading to an impulse I2.

During the spallation process a stress σ is
transmitted over the cracked cross section due
to the formation of a crack band and the soften-
ing stress-strain behavior of the material. This
is related to the difference of impuls by∫ t2

t1

σ Adt = I1 − I2 = ∆I (27)

The stress starts with the dynamic tensile
strength ft,d and ends up with zero after the for-
mation of a macro crack. On the other hand,
stress and crack energy are connected by

Gf,d =

∫ δ2

0

σ Adδ

=

∫ t2

0

σδ̇ Adt ≈ δ̇mean

∫ t2

0

σ Adt

(28)

with a variable crack width δ, a crack width δ2

at time t2 and the crack width velocity δ̇. This
leads to

Gd,f = δ̇mean ∆I (29)

Finally, the velocity of the crack width remains
to be determined. It is derived from the velocity
of the fragment’s left end

δ̇(t) = v(x1, t)− v(x1, t1) (30)
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The mean velocity may be approximated by

δ̇(t)mean ≈
1

2

[
δ̇(t2) + δ̇(t1)

]
=

1

2
δ̇(t2) (31)

This completes a method which allows the ex-
perimental determination of the high strain rate
crack energy from measured values of veloci-
ties [13]. It bases on the knowledge of the stress
wave. This may be determined in a Hopkinson-
Bar setup with the specimen connected to an
incident bar only. Furthermore, a linear elas-
tic behavior up to the point of tensile failure is
assumed.

Whether this assumption is valid may to
some degree be controlled by comparing the
measured fragment length and the theoretical
length L − x1. Moreover, this method relies
on correctly measured velocities which may be
achieved with high speed cameras.

A somehow crucial point exists with the de-
termination of the time t2, i.e. the time when the
crack has fully developed to become a macro
crack and does not transmit stresses anymore.

5.2 Computational results
Computational methods provide, e.g.,

stresses which are not or not directly acces-
sible to experimental measurement. But such
methods at least require an assumption about
material models and the specification of their
parameters.

The method as it has been described in the
previous section may serve to link experimental
investigations and numerical simulations.

The proposed material formulation and the
numerical method are applied to a spallation
test simulation. An axisymmetric formulation
is used to describe a long cylindrical specimen
according to the experimental setup in [13].

The specimen of 0.250 m length and 0.075
m diameter was discretized with 1485 axisym-
metric four node square elements which leads
to approx. 2.5 mm mesh size.

The specimen was pressure loaded from the
left end with a half sine wave of amplitude 18
MPa and 0.1 ms duration. It is free in motion
and a wave reflection occurs at the right end.

The time step of the Newmark method was
chosen according to explicit solution methods
with 0.8 of the maximum wave transition time
within an element.

A C40 concrete parameter set was consid-
ered according to Section 4 which leads to a
wave transition time through the specimen of 65
µs and a time step size of 0.5 µs. The Poisson’s
ratio is assumed with 0 to avoid spurious sec-
ondary waves.

Fig. 10 illustrates the stress distribution
along the specimen at different time steps for
the VERD material formulation. The pressure
wave is travelling through the specimen and re-
flects at the free end into a tensile wave moving
back. (see section 5.1).
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Figure 10: Stress wave distribution along the specimens
center axis.

The tensile wave amplitude exceeds the
strength of the material and tensile damage oc-
curs nearly at the center of the specimen accord-
ing to the incoming impulse length.

The specimen than spalls at this position into
two separate pieces while the remaining internal
stress waves are still propagating and reflecting
in both parts.

Fig. 11 shows the corresponding displace-
ment distribution at different time steps. The
spallation time is reached at 110 µs with the ini-
tiation of the separation.

The mean speed of the left part with 1.38
m/sec is less than 1.89 m/sec for the right part at
this time and the secondary part will fly away.
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The softening process takes approximately
30 µs, after this time the specimen is fully sep-
arated with the remaining mean part velocities
of 2.13 m/s and 1,96 m/s. This indicates a gap
between both.

- 0 . 1 0 - 0 . 0 5 0 . 0 0 0 . 0 5 0 . 1 0
0 . 0 0 0
0 . 0 2 5
0 . 0 5 0
0 . 0 7 5
0 . 1 0 0
0 . 1 2 5
0 . 1 5 0
0 . 1 7 5
0 . 2 0 0

t e n s i l e  l o a d  s t a t e

s e p e r a t i o n  p r o c e s s

r e f l e c t e d  p r e s s u r e

 

dis
pla

ce
me

nt 
(m

m)

p o s i t i o n  ( m )

p r i m a r y  p r e s s u r e

c r a c k  i n i t i a t i n g

c r a c k  o p e n i n g

Figure 11: Corresponding displacement distribution.

The corresponding local strain distribution
is illustrated in Fig. 12 and shows a widely
spanned zone between both parts. At the posi-
tion -0.04 m a strain peaks can be recognized as
a strong starting localization in this area leading
to a ”separation” at the respective element. This
is a well known numerical effect due to missing
regularization and does not reflect some phys-
ical behavior. To avoid this effect the damage
formulation is coupled to a nonlocal strain vari-
able as introduced in Section 2.3.
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Figure 12: Local strain distribution.

The corresponding nonlocal strain distribu-

tion is shown in Fig. 13 at the same time steps.
One can see that the regularization procedure
smoothes the maximum strain values. The max-
imum strain can now be recognized at approxi-
mately x=-0.03 m at the left side from the center
of Fig. 13.
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Figure 13: Nonlocal strain distribution.

The spallation plane is located at the posi-
tion of maximum strain and leads to two parts
of 84 mm and 166 mm length. Using Eq. (25)
the tensile strength is calculated with 4.3 MPa
with a pullback velocity ∆vvp = 0.78 m/sec.
Furthermore, the knowledge of the separation
plane and the masses of the remaining pieces al-
lows for calculating the dynamic crack energy
from the transferred impulse by Eq. (29). In
this particular case the dynamic crack energy 27
N/m is much less than the expected experimen-
tal value according to [13] of approximately 150
N/m. The difference is probably caused by the
assumed viscous damage evolution and regu-
larization parameters which are based on quasi
static experimental data. Especially this last is-
sue needs more investigations.

A computed stress-strain relation is shown in
Fig. 14 for the most damaged element. It has the
regimes of (1) the compressive load for the inci-
dent pressure wave, followed by (2) the unload-
ing branch due to the wave reflection with rever-
sal to tension. It reaches the tensile strength at
(3) followed by a softening part and is again (4)
unloading the not fully damaged material. It un-
dergoes further a secondary compressive load at
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(5) with reaching the maximum stress at (6) and
again softens at the compressive domain (7) to
full damage, which finally leads to (8) the large
straining part which indicates the gap.
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Figure 14: Stress strain evolution of the most damaged
element of the VERD model.

The assumption of a constant homogeneous
wave traveling through the specimen introduc-
ing a ductile crack at a predefined position,
underlies all experimental investigations. This
might be insufficient as it is indicated by the
numerical simulations. Fig. 15 shows the evolu-
tion of the strain-rate with time at different posi-
tions. The strain-rate is not constant as assumed
in experimental observations and rather shows
varying values during the cracking process.
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Figure 15: Strain rates distribution at different positions.

If the strain-rate varies with time and posi-
tion the local strength will be different depend-

ing on both. The viscous and the retardation
part of the material model introduce this strain-
rate variation leading to the inhomogeneous
damage within the specimen. The strain-rate
for this particular simulation with the VERD
formulation spans from 18 1/s to 24 1/s during
the main cracking process instead of 30 1/s for
purely linear elastic considerations.

These prior observations were made with
the VERD material formulation leading to time
and space dependent damage behavior as de-
scribed before. Additionally, Fig. 16 compares
the stress evolution at some representative po-
sitions for the linear elastic (E) and the visco-
elastic (VE) material model without damage.
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Figure 16: Stress distribution at 4 different positions for
the E and VE formulation.

The viscous part increases the elastic stiff-
ness with increasing strain-rate. Thus, the wave
speed increases and the traveling time through
the specimen reduces. The dynamic elastic
modulus increases from 36 GPa for the linear
elastic case to 50 GPa for the visco-elastic case
and the wave speed increases to 4677 m/sec
as mean value of the specimen. Furthermore,
it can be seen that the viscous stress evolu-
tion varies with the position. The stress wave
changes in shape and speed. This probably
leads to some overlaid inhomogeneous bounc-
ing with time and the observed oscillation.

The same effect can be recognized by intro-
ducing the damage part according to the elastic
damage model (ED), the visco-elastic damage
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model (VED), the retarded damage model with-
out (ERD) and with viscous part (VERD), see
Fig. 17.
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Figure 17: Stress distribution at the center of the speci-
men for the 4 damaged formulations.

The elastic (ED) formulation reacts with a
maximum tensile strength equal to the static as-
sumption of approx. 3.5 MPa while the viscous
(VED) one increase to 4.3 MPa. The corre-
sponding mean strain rate reduces in this case
from 30 1/s to 11 1/s. Introducing the damage
retardation part, the viscous influence remains
unchanged and the same kind of oscillation can
be found as has been described before.
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The superimposed stress-strain relations in
Fig. 18 for the position with the largest stress
values may explain this effect more clearly. The

none-viscous formulations react with a full sep-
aration in the tensile domain which corresponds
to a brittle behavior.

The viscous contributions on the other hand
lead to a more bearable strength in tension and a
not fully damaged state during the first unload-
ing branch. Full damage is finally reached in the
next loading cycle in the compressive domain.
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Figure 19: Relative damage.

This behavior can be summarized with intro-
ducing a global differential damage evolution
parameter stepwise holding the actual damage
increase. Fig. 19 compares this parameter for
the four damage formulations. It can be seen,
that the non-viscous formulations react with a
short high damage rate and the viscous formu-
lations with a lower, more ductile first part, fol-
lowed by the secondary damage increase.

6 CONCLUSIONS
A novel material model with viscoelastic re-

tarded damage is discussed in this paper. The
viscous part of the formulation leads to a mod-
erate strength increase with increasing strain
rate at lower values up to approx. 1 1/s. The re-
tardation part assumes crack opening inertia ef-
fects at higher rates and significantly increases
the virtual strength in this domain. While the
formulation of the stress-strain relations is fully
triaxial the model is applied to particular case
of uniaxial wave propagation. The three mate-
rial parameters may be calibrated such that the
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typical course of dynamic strength increase fac-
tors as given by recommendations and experi-
mental investigations may be approximated to a
desired degree. Numerical simulations of spal-
lation experiments exhibit some discrepancies
to experimental investigations. On one hand
these discrepancies have to be contributed to an
improvable parameter calibration of the mate-
rial model, on the other hand the simulations
reveal complex spallation mechanisms which
seem not to be adequately regarded in the setup
and processing of spallation experiments.
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