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Abstract: This article addresses the fundamental issue of shear transfer across rough joints, a 
problem of paramount importance in several civil engineering applications. Starting from the 
examination of the experimental results obtained from shear tests on concrete-concrete joints, rock-
rock joints and concrete-soil interfaces, the main features of the physical phenomenon are 
presented. The experimental results are then interpreted according to a novel formulation based on 
the integration of contact mechanics, suitable for the description of the pre-peak response of the 
joint, and nonlinear fracture mechanics, for the description of the post-peak softening branch. The 
proposed treatment fully takes into account the size-scale effects on the shear response of the joints 
due to interface roughness, providing a significant step forward with respect to the state-of-the-art 
modelling based on elasto-plasticity with a history dependent friction coefficient. 
 
 

1 INTRODUCTION 
The treatment of shear transfer across rough 

joints arises in several civil engineering 
problems. They range from retrofitting of 
damaged concrete structures with new 
concrete overlays [1] or with fiber-reinforced 
polymers [2] to the analysis of the shear 
response of rock joints [3] and concrete-soil 
interfaces in pile foundations [4]. Moreover, it 
is an aspect of paramount importance for the 
fundamental understanding of the behaviour of 
rough interfaces subjected to Mode II 
deformation. In these problems, although the 
joint is not glued or soldered as in composites, 
roughness induces similar effects, as we will 
quantitatively show in the sequel. 

Starting from the experimental evidence, 
shear tests on rock joints [3], concrete-soil 
interfaces [4], concrete-concrete cold joints [5] 
and bolt-fastened concrete layers [1] present 

common features and show that several 
mechanisms contribute to shear transfer. The 
most important are friction, cohesion due to 
asperity interlocking and the dowel action in 
the presence of bolts. The shear strength, 
which is as the peak shear traction evaluated 
from a shear test, is an increasing function of 
the normal pressure. This trend is shown in 
Fig. 1 for shear tests on concrete-soil 
interfaces [4], where the shear traction q is 
plotted vs. the sliding displacement gT.  

The amplitude of roughness is also 
increasing the shear resistance of the joint, as 
experimentally observed in [3].  

The specimen size, on the other hand, leads 
to an opposite trend, which is difficult to be 
explained according to classical Euclidean 
geometry. Large specimens have a lower 
strength than the small ones [3], as shown in 
Fig. 2. This size-scale effect on the shear 
strength has been interpreted in [6-8] by 
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considering the fractality of rough contact 
interfaces. 
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Figure 1: Shear test results for concrete-soil contact [4] 

showing the effect of the normal pressure p. 
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Figure 2: Shear test results for rock-rock contact [3] 

showing the effect of the specimen size Δ. 

The post-peak branch of the curve obtained 
from a shear test is also very complex and may 
present a transition from softening −for small 
specimen sizes or for high normal pressure− to 
a plastic plateau −for large specimens or for 
low normal pressure−, see Figs. 1 and 2.  

When steel bolts are included, the post-peak 
branch usually presents hardening. This 
phenomenon has been investigated in [1] by 
performing shear tests on concrete-concrete 
joints fastened using 2�12 steel bolts, for 
different amplitudes of roughness. The non 
planarity of the interface is originated by 
surface blasting with high pressure water (Fig. 
3(a)), or with sand (Fig. 3(b)). In both cases, 
the total tangential force, FT, is an increasing 
function of the sliding displacement gT up to a 

peak value (thick solid curves in Fig. 3). 
Afterwards, a softening branch takes place, 
which is followed by hardening for very large 
sliding displacements. The dowel action 
exerted by bolts was also measured in [1] and 
it is superimposed to the previous figures 
using a dashed-dotted line. The difference 
between the curve corresponding to the global 
response and the curve related to the dowel 
action is numerically computed here and it 
represents the shear contribution due to 
roughness (see the dashed curves in Fig. 3). 
This contribution shows a softening branch, in 
close analogy with the previous results 
displayed in Figs. 1 and 2. Sand blasting 
induces a roughness amplitude lower than high 
pressure water blasting and therefore the peak 
shear strength is lower in Fig. 3(b) than in Fig. 
3(a). This confirms that roughness has a 
decisive role on the frictional response of cold 
joints.  
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(a) High pressure water blasted surfaces. 
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(b) Sand blasted surfaces. 

 
Figure 3: Shear test results for concrete-concrete 

contact [1] showing the effect of the dowel action and of 
roughness, for two different surface treatments. 
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As regards modelling, an attempt to 
interpret these shear phenomena has been 
made in the framework of the finite element 
method and elasto-plasticity. A history 
dependent friction coefficient according to a 
semi-empirical expression and fitted on 
experimental results was proposed in [1] to 
capture the pre- and post-peak branches of the 
curves in Fig. 1. Although successful for these 
tests, the use of seven parameters reduces the 
possibility to generalize the results of this 
approach to other types of joints. In fact, all 
the model parameters are just best-fitting 
coefficients not related to measurable 
roughness properties.  

  In the present contribution, a new model 
based on the integration of contact mechanics 
and fracture mechanics is proposed. The 
novelty of the approach consists in modelling 
the pre-peak and the post-peak branches of the 
shear response by using and integrating two 
different methodologies, a modelling strategy 
not yet explored in the literature. The 
nonlinear pre-peak response is considered as 
the result of the phenomenon of micro-slipping 
of the asperities in contact. This problem is 
solved using the contact mechanics approach 
for rough surfaces proposed in [9] and 
generalized in [10] for cyclic loading. After 
achieving the peak shear stress, the post-peak 
regime is considered to be the result of a 
phenomenon of cohesion exerted by asperity 
interlocking. This stage will be modelled by 
introducing a new Mode II cohesive zone 
model. The micromechanical contact 
formulation and the nonlinear fracture 
mechanics model are integrated to provide a 
complete description of the joint behaviour. In 
case of bolt-fastened concrete blocks, the 
dowel action can also by added to the previous 
contributions to simulate the post-peak 
hardening, following the methodology 
presented in [1].  

The main achievement of the proposed 
model is the ability to take into account the 
size-scale effect observed in experiments. 
Moreover, it involves parameters solely 
dependent on the topology of rough surfaces 
that can be measured according to tribology 
standards [11].   

2 MODELLING THE PRE-PEAK 
RESPONSE BY USING CONTACT 
MECHANICS 

3.1 The normal contact problem 
Dimensional analysis considerations and 

incomplete similarity arguments presented in 
[12] have demonstrated that the normal contact 
stiffness of a rough joint is a power-law 
function of the normal pressure. Experimental 
results and numerical simulations have also 
confirmed this power-law trend, see [12]. This 
is due to the non Euclidean (fractal) character 
of roughness. In dimensionless form, the 
power-law relation between pressure and mean 
plane separation is: 

d
d

p p
d

β∝  (1)

where the dimensionless variables 
/ ( )p p Eσ= Δ  and /d d σ=  have been 

introduced.  The variable  is schematically 
shown in Fig. 4 and represents the distance 
between the average plane of the composite 
topography and a rigid flat indenting plane. 
The variable 

d

Δ denotes the upper cut-off 
length to the power-law behaviour of the 
power spectral density function of the rough 
fractal surface [11]. In the present case, it can 
be related to the lateral size of the sample. The 
remaining parameters, E and σ , are the 
Young's modulus and the r.m.s. roughness of 
the surface. 
 

 
Figure 4: Sketch of the normal contact problem 

between a equivalent composite rough surface and a 
smooth rigid plane. 

Integration of the ordinary differential 
equation (1) relating the normal stiffness to the 
pressure gives the pressure-separation relation. 
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This relation is exponential only in case of 
1=β  [12]. For the most general case 1≠β , 

we have: 

( )p K A Bd γ= −  (2)

which is a power-law if and only if A=0. The 
exponent γ is related to β  via )1/(1 βγ −= . 
The coefficient K is a scaling factor taking into 
account the nonlinear size-scale effect on the 
shear strength. A qualitative sketch of Eq. (2) 
is shown in Fig. 5. Considering a loading 
scenario where two rough surfaces are 
progressively brought into contact from a very 
large separation, the pressure is increasing by 
reducing , up to a final configuration 
denoted by the index f in Fig. 5. 

d

 

 
Figure 5: Dimensionless pressure-separation relation. 

3.2 The tangential contact problem 
Following the approach in [9,10], the 

solution of the tangential contact problem 
between rough surfaces can be derived from 
the solution of the normal contact problem. In 
formulae we have: 

)~~(~
)~~(~

NNT

ppq
ggg

,f

,f

−=

−=

μ

μ
 (3)

where μ  is the fiction coefficient, 

T T /g g σ=  is the dimensionless sliding 
displacement and / ( )q q Eσ= Δ  is the 
dimensionless tangential traction. Hence, the 
slip and the tangential tractions can be 
obtained from the solution of the normal 
contact problem at the final state of a normal 

contact simulation, minus a corrective term 
related to a lower pressure level.  

Equation (3) is sets up in terms of the 
dimensionless contact compliance, 

σ/~
NN gg = , which should be measured from 

the first point in contact (see Fig. 4). Although 
a tallest asperity always exists in numerical 
realization of rough surfaces, its elevation is 
affected by large variations governed by the 
extreme value theory. Hence, it is preferable to 
rewrite Eq. (3) in terms of the mean plane 
separation, a quantity much more stable from 
the statistical point of view. Noting that 

ddg ~~~
maxN −=  and introducing this relation 

into Eq. (3), we obtain: 

)~~(~
)~~(~

T

ppq
ddg

f

f

−=

−=

μ

μ
 (4)

O 

Final state 

p~

fp~

fd~ d~

Note that Eq. (4) does not depend on max
~d . 

The pressure range that can be explored is 
from 0 up to . Correspondingly, the 

tangential tractions vary from 
fp~

f fq pμ= down 
to 0. Intermediate values of tractions between 
0 and the value corresponding to full slip, fq , 

will be denoted as . The obtained 
dimensionless tangential traction vs. sliding 
relation is qualitatively shown in Fig. 6. It can 
be considered as a regularization of the Mohr-
Coulomb friction law, which would imply zero 
sliding until full slip takes place for 

q

fq q= . 
This sharp situation would happen only in the 
limit case of two ideally flat planes in contact. 
Physically speaking, the reason for this 
regularization is due to the non constant 
normal contact pressures supported by the 
asperities and induced by roughness. 

Using Eq. (2), the following explicit 
relation between q~  and  is obtained: T

~g

Tf f
KBq p KA g KBd

γ

μ
μ

⎡ ⎤⎛ ⎞
= − − −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
(5)
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Figure 6: Dimensionless tangential traction-sliding 

relation. 

3.4 Interpretation of the pre-peak 
experimental results 

In this subsection, the experimental shear 
tests related to the curves in Fig. 2 are 
numerically simulated and the predicted pre-
peak branches are compared with the 
experimental ones. To do so, the Young's 
modulus and the r.m.s. roughness are chosen 
as to represent the rock material analyzed in 
[3]. The parameters A and B in Eq. (2) are set 
equal to 2.04 and 0.41, respectively. Four 
different values of the specimen size, Δ = 5 
cm, 10 cm, 20 cm and 40 cm, are considered. 
The range of dimensionless separations 
explored is from 5 (large separations, very 
weak interaction)  to 0 (high pressure level). 
This is also the final state for the application of 
Eq. (3) and it leads to normal pressure levels 
consistent with the experimental ones in [3]. 
Considering K=1, the solid curve in Fig. 7 
corresponding to = 5 cm is obtained. All the 
other curves corresponding to different 
specimen sizes are obtained by selecting a 
different  in the fomulae and applying the 
coefficient K reported in Tab. 1. 
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Figure 7: Tangential traction vs. sliding displacement: 
numerical predictions (solid lines) and experimental 

curves (dashed lines). 

 

Table 1: Value of the coefficient K in Eq. (2). 

Δ (cm) K 
0.05 1.0 
0.10 1.5 
0.20 2.1 
0.40 3.2 

 
It is remarkable to note that, without the use of 
the coefficient K, the size-scale effect 
predicted by the application of Eq. (5) would 
be much higher. The coefficient K re-scales 
the vertical coordinates and it is related to the 
size-scale effect on the shear strength of the 
joint. Hence, the knowledge of this scaling law 
allows an easy computation of the parameter K 
by matching the peak traction given by Eq. (5) 
with K=1 and the shear strength given by the 
scaling law.  
 For rocks, the expression of the scaling law 
for the shear strength has been determined in 
[7,8] by considering a wide range of length 
scales ranging from the size of typical 
laboratory specimens to the size of a natural 
fault, obtaining . Determining  
and d

qdqq −Δ= * *q
q from best-fitting of experimental 

results, in logarithmic form we have:  

 Δ−= 1010 log34.033.4log q  (6)
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 Equation (6) fits very well the shear 
strength results of the tests in Fig. 2, as shown 
in the comparison of Fig. 8. 
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Figure 8: Size-scale effects on the shear strength: 

experimental data from Fig. 2 vs. scaling law in Eq. (6).  

4 MODELLING THE POST-PEAK 
RESPONSE BY USING FRACTURE 
MECHANICS 
 

The post-peak branches of the curves in 
Fig. 2 are modelled in this section according to 
a cohesive zone approach for Mode II 
deformation. The cohesion resistance to 
sliding is due to interlocking between the 
asperities, an aspect that takes place for large 
sliding displacements after the achievement of 
the peak strength. For this analysis, we follow 
the methodology proposed in [13,14] already 
adopted for the interpretation of uniaxial 
tensile tests and compression tests (Mode I 
problems).  

As a preliminary operation, the inelastic 
contribution to the deformation in the post-
peak branch is isolated by removing from the 
total sliding displacement the elastic 
deformation of the pre-peak branch. After this 
operation, the post-peak inelastic traction vs. 
sliding curves of Fig. 2 are transformed in the 
curves plotted in Fig. 9. They show a 
significant size-scale effect, much more 
evident than in Mode I problems [13].  

 

 
Figure 9: Inelastic post-peak branches obtained from 

Fig. 2, depending on the specimen size Δ.  

 
In order to obtain a single size-independent 

cohesive zone model in Mode II, a proper 
renormalization of the vertical and horizontal 
coordinates has to be made. Regarding the 
shear tractions, the scaling law in Eq. (6) 
suggests to divide q by , i.e., plotting the 
scaling invariant material property q

qd−Δ
*. The 

horizontal coordinates can also be 
renormalized in a similar way, considering the 
scaling law typical for the displacements 
which is inspired by the Cantor set [13], i.e., 

( )1
T T

gdg g −∗= Δ . In this case,  the fractal 
exponent gd  can range from 0 to 0.61, 
considering the equality relating the sum of the 
fractal exponents for the strength, the strain 
and the fracture energy (refer to [13] for more 
details about the description of the fractal 
domains).  

For the present problem, the best 
dimensionless representation with the 
minimum scatter between the curves is 
obtained for , which leads 

to

0gd =

T Tg g∗ = Δ . The collapse of the curves in 
Fig. 10 shows that the post-peak branch of the 
different experimental shear tests can be 
effectively modelled according to a single 
scale-invariant  Mode II cohesive zone model.  
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Figure 10: Scale-invariant Mode II cohesive zone 
model. The various curves correspond to different 

specimen sizes Δ.  

5 CONCLUSIONS 
In this work, the fundamental problem of 

shear transfer between rough surfaces has been 
analyzed in reference to the existing 
experimental results available in the literature. 
Shear tests on rock-rock joints, concrete-
concrete interfaces, and concrete-soil 
foundations present several common aspects. 
In particular, the pre-peak response of the 
shear traction vs. sliding displacement curve is 
highly nonlinear, due to progressive sliding of 
micro-contacts. After the achievement of the 
shear strength, the post-peak branch presents 
softening and plastic plateau, when steel bolts 
are not included. Finally, the shear strength 
exhibits a strong size-scale effect, as also 
typically observed in previous studies 
regarding Mode I problems [15-17].  

In order to interpret both regimes, a hybrid 
formulation based on contact mechanics for 
the pre-peak stage and on nonlinear fracture 
mechanics for the post-peak one has been 
proposed. This modelling strategy is consistent 
with the physics of the phenomenon, since the 
pre-peak response is mainly related to the 
progressive slippage of micro-contacts, 
whereas the post-peak behaviour is governed 
by cohesion originated by asperity interlocking 
and frictional effects. As a result, we have 
been able to predict with a reasonable 
accuracy the pre-peak regime and the related 
size-scale effects, proposing the simple Eq. (5) 
and an algorithm easy to use for the simulation 
of shear tests from the knowledge of the 
normal contact stiffness. Regarding the post-

peak branches, a single scale-invariant Mode 
II cohesive zone model has been proposed. 
This methodology is expected to have an 
impact in the design formulae for the 
estimation of the shear strength of cold joints 
and it overcomes all the main disadvantages of 
the purely numerical elasto-plastic approach 
proposed so far in the literature.    
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