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Abstract. This paper presents a dedicated numerical test that enables to assess the directional mesh
bias of constitutive models in a systematic way. The test makes use of periodic boundary conditions,
by which strain localization can be analyzed for different mesh alignments with preservation of mesh
uniformity and with exclusion of boundary disturbances.
After an exploratory study of the proposed test, the test is demonstrated by applying it to the classical
and still widely used crack band model. An analysis series is performed on five meshes with different
alignments. The meshes consist of squared quadrilateral elements with varying interpolation function
and numerical integration scheme. From the results it can be concluded that the test identifies a
significant mesh-induced directional bias.

1 INTRODUCTION

When modeling strain localizations (e.g. [1])
with finite element (FE) discretizations and
standard continuum models, generally mesh de-
pendency is observed. The spatial discretization
or mesh layout influences the numerical solu-
tion, and mesh objective energy dissipation of
the fracture process cannot be guaranteed. The
mesh dependency can be subdivided in a pref-
erence to propagation of the strain localization
band along continuous mesh lines (directional
mesh bias) and in a sensitivity with respect to
the size of the finite element (mesh size sensi-
tivity). Although the latter issue has been prop-
erly solved by the introduction of the crack band
model [2], the directional mesh bias is still a
challenging topic. To overcome this issue of
mesh dependency many different solutions have
been proposed. In the context of smeared crack

models one could think of adding nonlocal or
gradient terms to the constitutive modelling,
resulting in higher order continuum models.
Apart from the continuum based models one
could also think of models that include disconti-
nuities, like the extended finite element method
(X-FEM) and the concept of embedded discon-
tinuities.
In order to assess the influence of directional
mesh bias on the results when using one of the
above models, authors usually perform analy-
ses on one or more fracture tests. Very popular
are the single-edge-notched (SEN) and double-
edge-notched (DEN) specimens, uni-axial ten-
sion tests, strips with a hole and a three-point
bending test. Commonly one compares the nu-
merical results obtained from a structured ver-
sus an unstructured finite element mesh, or from
a regular versus a slanted finite element mesh,
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after which conclusions are drawn whether the
directional bias of the mesh is eliminated or
not. Without objecting to the correctness of
these conclusions the authors propose to study
the sensitivity with respect to the orientation of
the crack versus the mesh lines in a more elab-
orated and systematic way. Therefore a dedi-
cated numerical test is presented in this paper.
Assessment of the constitutive models on di-
rectional mesh bias with this test may lead to
a better understanding of the influence of the
involved parameters, and possibly to improve-
ment of model’s ability to deal with it.

The test introduces the concept of periodic-
ity [3] in the field of strain localization anal-
ysis. The idea is that a finite piece is cut
from an assumed infinite, initially homoge-
neous, discretized periodic medium. Within a
two-dimensional R2 space the discretized peri-
odic medium is represented by an infinite (flat)
plane, see an example in Fig. 1, while in a
three-dimensional R3 space an infinite volume
is used. The isolated finite plane or volume
is now considered as a separate FE discretiza-
tion with periodic length scales Li , i = x, y, z,
by which constraints will be added at the op-
posite boundaries. When these constraints or
periodic boundary conditions are properly as-
signed, the behavior of a finite plane/volume
within an infinite periodic medium under cer-
tain loading conditions can be simulated ex-
actly with the FE model of just the isolated fi-
nite plane/volume. Actually, knowing the be-
havior of the finite plane/volume also the be-
havior of the infinite medium is known, under
the assumption of periodicity. Note that due
to the imposed periodicity in principle it is not
important how the boundary edges are shaped,
since they do not have a physical meaning any-
more, as long as they are periodic. This means
that the distance between the opposite boundary
edges/faces should be everywhere the same for
each pair of edges/faces. The absence of physi-
cal boundaries in this numerical test may be par-
ticularly appealing for the nonlocal models and
the gradient-enhanced models.

 
 

 
 
 
 

Figure 1 Conceptual FE model used in test series 
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Figure 1: A possible geometry (2D) of a finite plane,
taken from an infinite discretized periodic medium, with
periodic length scales Lx and Ly , loaded by a uni-axial
tensile load.

Including periodic boundary conditions, the
numerical test enables to adopt different mesh
alignments or element orientation angles θ with
respect to the loading direction. In contrast with
standard tests this can be done without bound-
ary disturbances on the localization process and
with preservation of mesh uniformity. Mesh
uniformity in this sense means that all charac-
teristics of each finite element (i.e. shape, size,
orientation, interpolation function and numeri-
cal integration scheme) in a specific mesh are
identical. More details and some specific pos-
sibilities of the proposed test are described in
another work of the authors [4].

In this paper the numerical test is used to as-
sess the directional mesh bias of the classical
and still widely used crack band approach [2]
in the smeared cracking concept. Although the
test can be used in three-dimensional models
and with different loading cases as well, anal-
yses are only performed for two-dimensional
plane stress situations with uni-axial tensile
loading. Section 2 presents the results of an ex-
ploratory study of the test with periodic bound-
ary conditions. Subsequently, the results of a
mesh alignment study are shown in Section 3.

2 EXPLORATORY STUDY
In this section the numerical test with peri-

odic boundary conditions is explored by means
of variations of the solution procedure, the soft-
ening law and the use of an imperfection. For
all the performed analyses the same mesh is
adopted. The geometry, boundary conditions
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and material input of the test are given in Sec-
tion 2.1. Section 2.2 presents results of the dif-
ferent analyses.

2.1 Modeling aspects

In Fig. 1 the general setup of the test is
shown and the element orientation angle θ is de-
fined. For the analysis series described in this
section a θ - value of π/4 is used. The geometry
of the two-dimensional model is composed by
periodic length scales Lx and Ly of 990 mm and
424 mm. The model is meshed with squared
quadrilateral elements based on linear interpo-
lation and with a 2 × 2 Gauss integration or-
der. A selective reduced integration is speci-
fied for the shear terms. Element sizes of 50
mm by 50 mm and a thickness t of 150 mm are
adopted. Periodic boundary conditions are ap-
plied by the specification of linear dependencies
between the degrees of freedom of the nodal
pairs at the opposite edges, using a master-slave
format. The numerical models are loaded by a
uni-axial tensile load in the horizontal direction,
represented by a constant displacement differ-
ence in x-direction between the left and right
model boundaries.
The material behavior is modeled with an or-
thogonal fixed crack model and a variable shear
retention relation [5]. A crack band model
according to Govindjee et al. [6], based on
Oliver [7] is used. The following fictitious ma-
terial properties are adopted: a Young’s modu-
lus E0 of 10,000 N/mm2, a tensile strength ft
of 1.0 N/mm2, a material fracture energy Gf of
0.125 N/mm and a Poisson’s ratio ν of 0.0.

Table 1: List of performed analyses

sol. procedure softening law imperfection
1. SLA Hordijk no
2. rNR Hordijk no
3. SLA Hordijk yes
4. rNR Hordijk yes
5. SLA Moelands no
6. SLA Moelands yes

In total six analyses are performed in this ex-
ploratory study, summarized in Table 1. Re-
garding the variations, in case of an applied im-
perfection the tensile strength ft is reduced with
5% in one element. Furthermore, nonlinear
stress - strain relations according to Hordijk [8]
softening and Moelands & Reinhardt [9] soften-
ing are adopted, see Fig. 2. Based on the afore-
mentioned material properties the crack open-
ings wult at which stresses can no longer be
transferred are 0.642 mm and 0.528 mm re-
spectively. The Moelands & Reinhardt soften-
ing curve is characterized by its initial steep de-
creasing slope of −∞. Finally, two different
solution procedures are used: an incremental-
iterative scheme based on a regular Newton -
Raphson method (rNR), and the Sequentially
Linear Analysis (SLA) method, e.g. [5,10]. The
last mentioned method replaces the standard
incremental-iterative solution procedure by a
series of scaled linear analyses. In every anal-
ysis a critical event is traced and subsequently
a stiffness and strength reduction in the critical
integration point is applied. In order to apply
such damage increments a discretization of the
nonlinear stress - strain relation is required, re-
sulting in the use of a so-called saw-tooth curve
with a finite number of damage increments. For
the analyses in this paper the softening diagram
is approximated by 20 damage increments.
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Figure 2: Hordijk and Moelands & Reinhardt softening
laws for given material properties.
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Figure 3: Load - displacement curves of analyses with Hordijk softening (a) and Moelands & Reinhardt softening (b).

2.2 Results

Fig. 3 presents the global responses of the
six analyses in terms of load - displacement
curves. Firstly, it can be seen that all numeri-
cally obtained curves show a ductile post-peak
behavior with a residual plateau at about 15-20
kN. Subsequently, the curves of the correspond-
ing rNR and SL-analyses with Hordijk soften-
ing show reasonable agreement. The observed
spiky shapes of the SLA curves are typical for
the SLA method due to its saw-tooth softening
input. Note that with respect to the rNR anal-
yses almost all load increments are converged.
Finally, the observed load drops in the curves
coincide with ‘fast’ strain localizations, as will
be shown below. For the analyses with Hordijk
softening and without an imperfection this hap-
pens not immediate after the peak load has been
reached. Their curves in Fig. 3(a) reveal first a
plateau before the load drops and with that the
strains localize in a small zone. For the compa-
rable analysis with Moelands & Reinhardt soft-
ening in Fig. 3(b) strain localization occur right
after the peak. This curve, on the other hand,
shows even an snapback behavior.
From the above mentioned observations it can
be stated that all analyses suffer from stress
locking [11]. In case of a fully developed sin-
gle crack one could expect a Fx of zero when

wult is reached. However, induced by misalign-
ment of the crack band with the mesh lines spu-
rious stresses across the crack occur, resulting
in an asymptotic post-peak behavior to a cer-
tain load level. The height of this load level
depends on the degree of misalignment. Fur-
thermore, it is found that with Hordijk soften-
ing an immediate strain localization after the
peak does not always occur. In case that no im-
perfection is added to the model, both rNR and
SLA results show initial cracking of all the in-
tegration points in the model. This explains the
plateau in the corresponding curves right after
the peak, since all the integration points con-
tribute to energy dissipation in the model. At
a certain moment the strains localize in a rel-
atively small part of the model, leading to un-
loading and crack closure in the remaining part.
Fig. 4 shows this for the analysis ‘rNR - hordijk
- no imp.’. The crack strain plot is taken at utot
= wult . Note that the numerically obtained lo-
calization bandwidth is extended over approxi-
mately two columns of elements.
The addition of an imperfection in the model
helps to trigger a ‘fast’ localization, as can be
concluded from the immediate load drop right
after the peak in Fig. 3(a). The crack plot just
after the peak shows only one single macro
crack in the model rather than micro-cracking
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Figure 4: Crack strain plot (deformed mesh) at utot =
0.642mm (a) and evolution of strain profile (b) at red line
in Fig. 4(a), belonging to analysis ‘rNR - hordijk - no
imp.’.

in all integration points. This hold also true
when a Moelands & Reinhardt softening is
adopted, see Fig. 3(b). Strain localization is
now stimulated by the initial steeper slope of
the softening branch of the local constitutive re-
lation, see Fig. 2. The addition of an imperfec-
tion appears superfluous in case of Moelands &
Reinhardt softening, and this might be advan-
tageous considering the concept of periodicity.
Fig. 5 shows the strain profiles at utot = wult of
both analyses with Moelands & Reinhardt soft-
ening. Two different locations of the strain lo-
calizations can be observed. In case of ‘SLA -
moelands - imp.’ the location of the strain jump
is in the middle (coinciding with the location
of the applied imperfection), where in case of
‘SLA - moelands - no imp.’ the strains arbitrar-
ily localize near the left and right model bound-
aries. In the initial homogeneous strain field
this is determined by numerical round-off [12].
Note that, although not proven here, an imper-
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Figure 5: Strain profiles at utot = 0.528mm of
SL-analyses with Moelands & Reinhardt softening in
Fig. 3(b).

fection is inevitable in order to obtain ‘fast’
strain localizations with standard incremental-
iterative solution procedures. For SLA this is
not necessary, due to the adopted “event-by-
event” strategy.

3 MESH ALIGNMENT STUDY
The mesh alignment study is performed with

Moelands & Reinhardt softening, without im-
perfections and SLA as solution procedure.
Variations are done with element types and
mesh alignments or element orientations. Three
different quadrilateral element types are used.
The first one is a quadrilateral based on linear
interpolation, with a 2 × 2 Gauss integration
order and a selective reduced integration for the
shear terms. The second and third element types
are quadrilateral eight-node elements based on
quadratic interpolation and with a 2× 2 and 3×
3 Gauss integration order respectively. Further-
more, five different element orientation angles
θ are adopted, which are depicted in Fig. 6. The
alignments are the result of five selected a - val-
ues, namely∞, 9, 4, 2 and 1. From Fig. 1 it can
be seen that the a - values arise from the geome-
try of the step-shaped boundary edges, and that
they are directly coupled to θ. All five FE dis-
cretizations are meshed with each of the three
element types, resulting in 15 different uniform
meshes. The remaining modeling aspects are
the same as in Section 2.1.
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Figure 6: Uniform meshes (including supports) with five different mesh alignments or element orientations.

To present the results of the 15 analyses in
a compact way, an outcome G∗f is introduced.
This apparent fracture energy is defined by

G∗f =

∫ wult

0

Fx

Lyt
dutot (1)

Eq. (1) indicates the area under the numerically
obtained load - displacement curve for the range
0 ≤ utot ≤ wult , divided by the theoretically ex-
pected crack area Ly t . Subsequently, the ra-
tio G∗f /Gf is calculated for all the 15 analyses
and plotted against the element orientation an-
gle θ. This ratio can be seen as a measure for
the deviation of the numerically obtained ma-
terial fracture energy to the specified material
fracture energy. The values are shown in the
graph of Fig. 7.
It can be observed that the actual ratio of G∗f /Gf

for all analyses ranges from approximately 0.5
to 1.9. A scatter is already seen for θ = 0. Where
the curves belonging to the quadratic quadrilat-
erals converge subsequently with increasing θ,
the curve ‘quads, linear, 2 × 2 Gauss’ deviates
more and more from these two lines. Further-
more, it can be observed that the dashed lines
in the graph are generally increasing with an in-
creasing θ - value. Only for the two quadrilat-
eral element types with quadratic interpolation
the curves show after approximately θ = π/8 a
plateau until θ = π/4.
Fig. 8 shows three crack width plots at
utot ≈ wult for the analyses with θ = 0.24498
rad and varying quadrilateral element types. Ir-
respective of the element type the plots reveal
global cracks that clearly propagates along the
inclined mesh lines, rather than vertically.
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On the other hand, the directions of the lo-
cal cracks in the elements of the final localiza-
tion zone are generally vertical. The widths of
the localization zones in the plots are different,
varying from half the element width (‘quads,
quadratic, 2 × 2 Gauss’) to the entire element
width (‘quads, linear, 2 × 2 Gauss’). Strik-
ing is the observed periodicity in the deformed
meshes in both the crack patterns and opposite
boundary displacements. This reveals that the
periodic boundary conditions are properly ap-
plied.
The above mentioned observations from the
Figs. 7 and 8 indicate that the band model ac-
cording to Govindjee et al. suffers from a sig-
nificant directional mesh bias, depending on in-
terpolation function and numerical integration
scheme. Ideally, the curves of the three ele-
ment types in Fig. 7 should be horizontal lines
at G∗f /Gf = 1.0. However, they show a signif-
icant spread around this target line. Consider-
ing Fig. 6 and the trend of the curves in Fig. 7,
the results of the analyses reveal that generally
with an increasing misalignment of the cracks
with respect to the element edges, the value G∗f
also increases. The difference in computed ra-
tios at already θ = 0 can be explained by the
phenomenon of strain localization within only
a part of the element width rather than the en-
tire element width. This happens only for the
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Figure 8: Crack width plots (deformed meshes) at≈ utot
= 0.528mm belonging to the analyses in Fig. 7 with θ
= 0.24498 rad and varying quadrilateral element types.
The thickest lines correspond to w ≥ wult .

quadratic quadrilateral elements, since they al-
low a linear strain field within the element.
Depending on the adopted integration scheme
the strain localization bandwidth is limited to
one column of integration points (2 × 2 Gauss
scheme) or two columns of integration points
(3 × 3 Gauss scheme). As mentioned above,
the phenomenon of strain localization within
only a part of the element is also observed in
the crack width plots of Fig. 8. With respect
to the adopted numerical integration scheme it
can be seen that the differences in mesh bias
for quadratic quadrilaterals remain relatively
small. The observed plateaus between π/8 and
π/4, after monotonic increasing parts of the
curves, indicate that quadrilateral elements with
a quadratic interpolation function are able to
break through the tendency of the guided crack
developments along continuous mesh lines. Fi-
nally, it should be noted that the value 1.9 at θ
= π/4 of the curve ‘quads, linear, 2 × 2 Gauss’
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resembles with the numerically obtained local-
ization bandwidth of the analysis ‘rNR - hordijk
- no imp.’ in Fig. 4.

4 CONCLUSIONS
In the present study a dedicated numeri-

cal test with periodic boundary conditions is
proposed that enables a systematic assessment
of directional mesh bias of constitutive mod-
els, like the crack band approach, nonlocal and
gradient-enhanced models. The test can be per-
formed for two- or three-dimensional FE dis-
cretizations under different loading conditions.
Since the test includes the concept of periodic-
ity, strain localization can be studied in meshes
with different alignments, without loss of mesh
uniformity and without disturbances from the
model boundaries. Assessment of the consti-
tutive models on directional mesh bias with this
test may lead to a better understanding of the
influence of the involved parameters, and pos-
sibly to improvement of model’s ability to deal
with it.
From an exploratory study with the proposed
test it appears that the results of a standard
incremental-iterative solution procedure and the
SLA-method are in reasonably agreement. Fur-
thermore, it is found that the use of Moelands &
Reinhardt softening stimulates the occurrence
of an immediate strain localization after the
peak load has been reached.
The actual purpose of the test with periodic
boundary conditions is demonstrated by means
of a mesh alignment study. In this small study
the crack band model is evaluated in the con-
text of a two-dimensional plane stress situation
with uni-axial tensile loading. From the results
of the numerical tests a significant directional
mesh bias is recognized. The well-known phe-
nomenon of strain localization within only a
part of the element width rather than the entire
element width, in case of quadratic quadrilater-
als, is also clearly identified with this test.
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