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Abstract:  
The assessment of the fatigue loading of a structure demands the consideration of the nonlinearity 

effects derived from the geometric variations and the bars stiffness changes. The resolution through 

matrixes methods frequently uses an incremental treatment for load application, being considered at 

each loading step, the solution research by means of an iterative process which result is expected to 

be convergent. In each increasing and iterations a variant of the equation of equilibrium can be 

brought up between loading and displacements differentials, that variant is solved in the linear field. 

The tangent stiffness matrix used has to consider an elastic and linear component and the other 

component that takes into account the geometric variations and mechanical nonlinearity of 

materials. 

The present work deals with the component of the affected stiffness matrix due to the material 

mechanic nonlinearity. Its quantification in reinforced concrete and composites structures is 

especially complex because of the presence of several materials with different resistant behaviour 

each one and to nonlinearity between stresses and strains especially in the concrete case and to the 

inertia reduction of the section produced by concrete cracking. 

The developing of an iterative process based on bisection method, which provides the equilibrium 

position of the section in front of known requests, taking into account the nonlinear constituent 

relationships of materials. Once the equilibrium has been obtained, the section stiffness modulus 

can be deduced from the expression E·I=M/φ. 
 

1 INTRODUCTION 

The frame structure design can be done 

under several hypotheses; currently the most 

important two of them are the assessment of 

geometric nonlinearity of the structure and the 

consideration of an elastic or plastic behaviour 

of materials. The interesting comparative study 

about different designing models made by 

Nethercot
 
[1] can be consulted.  

First approach to the structures design by 

using a matrix method was made by Livesley 

[2]. At this, the nodes deformations on framed 

structures are related to the loads applied by 

the named stiffness matrix. Nowadays the 

essence of his mathematical model is still 

preserved, and many of later advances in it are 

linked to the computer and software 

development.  
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Studies about the assessment of geometric 

nonlinearity of structure started with Jennings 

[3], being his work simplified by Yang and 

McGuire [4]. 

The approach to geometric nonlinear design 

is usually made by using an increasing set out 

of load application, using Zienkiewicz [5] 

terminology can be expressed by: 

[ ][ ] [ ]FuKKK GL ∆=∆++ 0 (1) 

Where [KL] is the linear stiffness matrix, 

[KG] and [K0] are the matrixes that take into 

account, respectively, initial stresses and 

strains. [∆u] and [∆F] are the vectors that 

represent, at the same time, the increasing 

displacements and forces.  

In contrast to geometric nonlinearity, the 

nonlinear behaviour of the materials is usually 

taken into account only for sections 

measurement. However, an accurate process 

must take it into consideration in the structure 

analysis process itself. In this case, the linear 

stiffness matrix [KL] of equation (1) is replaced 

by the named tangent matrix [Kt]. 

The mechanical nonlinearity influences 

particularly at concrete structures, because of 

their elasticity module that depends on the 

load applied value and in the evaluation of the 

section inertia, the concrete cracking and the 

amount and reinforcing distribution must be 

taken into account. 

From them, are the slender supports, the 

elements that in addition to the section 

strength, is especially necessary to take into 

account the second order effects and the 

nonlinear stress-strain behaviour of materials. 

There is a lot of studies about beam-column 

behaviour among them the ones made by 

Mavichak and Furlong [6], Al-Noury and 

Chen [7], Virdi and Dowling [8], Wang and 

Hsu [9] or Roik and Bergmann [10] must be 

quoted.  

The present work develops an iterative 

procedure in order to obtain the stiffness 

modulus E·I of the section at each loading step 

taking into account the applied solicitations, 

the nonlinear constituent equations of 

materials, the concrete cracking and variation 

on modulus of elasticity. 

     This alternative procedure to the well-

known quasi-Newton method proposed by 

Yen [11], is based on bisection method in 

order to get the section equilibrium. Once 

achieved this, the section modulus of stiffness 

can be deduced from the expression E·I=M/φ. 
     Subsequently this procedure has been 

implemented in a computer program about 

nonlinear analysis of structures that uses an 

increasing treatment in load application. The 

bar stiffness is corrected in each iteration for 

both reasons geometrical and mechanical of 

the materials. 

In this way the assessment of mechanic 

nonlinearity of materials, although it affects 

compressed bars in a special way, this will 

make it applicable in the whole framed 

structure. 

 

2 CALCULATION METHOD 

2.1 Assumed hypothesis 

Following hypothesis are accepted at the 

calculation process: 

1. Plane surfaces remain plane after 

deformation (Bernoulli hypothesis). The 

deformation proportionally varies with the 

distance to the neutral fibre. 

2. Between steel and concrete a compatibility 
of deformations exists in their contact 

surfaces. 

3. Creep and shrinkage effects of concrete are 
neglected. 

4. Effects produced by tangential stress are 
neglected. 

5. Tensile strength of concrete and the stress 
increasing due to the steel hardening are 

neglected. 

2.2 Constitutive laws of materials 

The stress-strain relationships used in this 

work are provided by the Eurocodes 

regulations EC2 [12] and EC3 [13], which are 

based on relationships under observation 

experimentally tested in test tubes. 

In the concrete case, the named parabola-

rectangle diagram has been used, which 

relationship between stresses and strains can 

be expressed by the function:  
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Maximum strain εcu taken in this diagram is 

about 0,35 %. 
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Figure 1 : Concrete stress-strain diagram 

For steel case, a simplified stress-strain 

diagrams constituted by two branches will be 

adopted, first branch starts from the origin, 

with a slope equal to Es (that is reached at 

210kN/ mm
2
) until fsk (the specified value of 

the characteristic elastic limit, depending on 

the steel type). 

A second horizontal branch will be adopted 

for a computer calculation with a slope of Es / 

10000, taking a maximum value of 1 % as the 

limit maximum of the unitary strain.  
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Figure 2 : Steel stress-strain diagram. 

3 STRUCTURAL ANALYSIS 

At structural design in elastic system, the 

equilibrium relationship is defined in a linear 

way between forces and displacements, where 

the matrix stiffness values of the structure are 

constant values. Its resolution consists on 

getting the displacements vector of nodes {∆} 
from the relationship: 

[ ]{ } { }PK e =∆   

Where [Ke] is the elastic and linear stiffness 
matrix and {P} is the loads vector. 
Main difference while dealing the second 

order effects consist on that the values that 

built up the structure stiffness matrix depend 

on displacements and the loads applied. 

The solution research use to be brought up 

in an incremental way by the loads application. 

At each loading step it is solved by an iterative 

process, a variation of the equilibrium 

equation: 

[ ]{ } { }dPdK t =∆  

[Kt] is the tangent stiffness matrix and {d∆} 
and {dP} respectively represent the vectors of 

both displacement and loads differentials. The 

tangent stiffness matrix is formed by a linear 

and elastic component [Ke], and other 

nonlinear component, [Kg] y [Km], according 

to McGuire terminology [12]. The first one, 

[Kg], takes into consideration geometric 

variations of the bar and the second one [Km], 

considers the mechanical nonlinearity of 

materials. 

The different elements of the stiffness 

matrix can be obtained, according to the 

procedure exposed by Paz [13], through the 

expression: 

dxxxIEk j

L

o
iij )·()·(·· '''' ψψ∫= (3) 

Where ψi(x), equation (4), is the defining 

function of the bar deformations y(x) when a 

unitary displacement δI takes place and the rest 

of displacements are null (see Figure 3). 








 −==








−






==








 −==








+






−==

1·)(1

·2·3)(1

1·)(1

·2·31)(1

2

44

32

33

2

22

32

11

L

x

L

x
x

L

x

L

x
x

L

x
xx

L

x

L

x
x

ψδ

ψδ

ψδ

ψδ

 

 

 

 

 

 

 

(4) 



Ernesto Fenollosa, Adolfo Alonso 

 4

 

 
Figure 3: Bar deformations 

When the material nonlinearity is wanted to 

be evaluated, we cannot take the E·I term in 

the equation (3) as a constant value. In this 

case, the bar stiffness will be obtained from 

the E·I term evaluation in a set of discrete 

sections along the bar. 

Below is developed an iterative process to 

obtain the E·I modulus of stiffness in 

reinforced concrete and composites sections 

while under axial load and biaxial moments. 

4 EQUILIBRIUM RESOLUTION OF 

THE SECTION 

4.1 Section response. 

In the general case of axial load and biaxial 

bending, the relation curvature-axial load-

moment involves six variables, that in relation 

to the reference system represented at Figure 

4, are: the P axial force, Mz and MY bending 

moments, zn distance from neutral axis to the 

section centre of gravity, φ the plane curvature 
and the θ angle formed by neutral and Y axes. 

cu (<0)

i

Z n

Z i

Z

Y

neutral axis

 

Figure 4 : Section response assessment 

Among the most known methods to 

determine the section response, must be 

quoted the method that use a section 

discretization model for segments or cells [8]. 

Both segments and cells have a constant 

strength assigned, which is applied to their 

centre of gravity.  

At present work has been used a 

discretization model of the section based on 

segments, according to the process described 

below. 

A specific value is assigned to the neutral 

axis position (θ and zn) and deformation plane 
curvature (φ), the process begins to change all 
the points coordinates that defines the section 

(perimeter vertex, structural section vertex, 

and the centre of gravity of reinforcing bars), 

to express them with regard to the reference 

system defined by a neutral axis. Following 

coordinates transformation expression is used: 
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Where (z’, y’) are the coordinates in the 

new reference system, θ is the neutral axis 
rotation angle in relation to Y axis and (z, y) 

are the point coordinates in relation with Z-Y 

system. 

Then the section is divided in a reduced 

thickness segments set parallels to the neutral 

axis. The medium line deformation of each 
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segment is determined by: 

yi ·φε =  (6) 

Each segment tension is obtained by the 

materials constitutive law application. When a 

segment involves different materials, it is 

subdivided into portions for area determination 

purposes and the stress correspondent to each 

one of them.  

The section response is obtained by 

numerical integration: 
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(7) 

4.2 Approaching to the solution of the 

neutral axis position and rotation. 

Once we know the axial load and biaxial 

bending moments, the section equilibrium 

position determination requires an iterative 

process. 

Although the method developing 

convergence is guaranteed, the number of 

iterations required is highly sensitive to the 

initial values of neutral axis position and 

rotation. Because of that to get starting values 

near enough to the final solution is advisable.  

When a biaxial moment is acting over a 

section, which vector coincides with one of his 

main inertia axis, the neutral axis coincides 

with the vector before mentioned. 

If two biaxial bending moments are acting 

but the section have the same inertia with 

respect to its two main axes, then the neutral 

axis coincides with the vector defined by those 

two moments. The angle formed with Y axis 

can obtained through the expression: 
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(8) 

As usually happens, if the section inertias 

are different in their two axes, then neutral 

axis will not coincides with the momentum 

vector, being necessary to correct its position 

taking into account the inertias. 
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We will take as superior and inferior limits 

in neutral axis rotation angle to apply the 

procedure, will be used:  

θθθ
θθθ

∆+=
∆−=

sup

inf  
 

(10) 

The distance zn to the section centre of 

gravity and neutral axis, will depend on the 

eccentricity of the axial load and area and 

inertias of the section. Its value can be 

estimated by the expression: 
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As superior and inferior limits of neutral 

axis will used: 
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(12) 

It is rather more complicated to approach 

the ending curvature of the deformed plane. 

Because of this, null curvature is adopted as 

the inferior limit and the curvature 

correspondent to the section failure surface as 

the superior limit, for previously defined 

rotation and position. Medium value is used as 

an initial value. 
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(13) 

4.3 Equilibrium position location 

The iterative process that is proposed to 

locate the equilibrium position, based on 

bisection method, it consists of three loops in 

chain. 

When rotation and position of neutral axis 

are determined by means of the equations (9) 

and (11), the first loop locates the curvature of 

the deformed plane due to the equilibrium 

between axial load and internal force of the 

section. 

After section response has been obtained, 
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equation (7), with initial curvature, the routine 

corrects its value at the axial load function. If 

the section response is bigger than the axial 

force, then to reduce curvature is necessary, 

but in the opposite case to increase it. Next 

iteration value is obtained by the expressions: 
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(14) 

Second loop determines neutral axis 

distance to centre of gravity of the section 

because of the equilibrium of Z axis bending 

moment with internal reaction of the section. 

This loop includes the first one, so when 

convergence is obtained, then neutral axis 

position will be known, as well as the 

curvature of deformed plane. After getting 

section response with initial position of neutral 

axis (zn), the routine corrects its value 

depending on Z axis bending moment. If the 

section response is bigger than Z axis bending 

moment, then to move away the neutral axis 

will be necessary, in the opposite case to move 

closer. As the section response is obtained in 

relation to the reference system defined by the 

neutral axis rotation, to change the reference 

system to Z-Y axes is necessary. The new 

value of the neutral axis for the following 

iteration is obtained by the expressions: 
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(15) 

Third loop determines neutral axis rotation 

because of the equilibrium between bending 

moment in Y axis and the internal moment of 

the section, keeping a fixed distance from 

neutral axis to section centre of gravity. This 

loop includes the two previous loops, so when 

convergence is obtained, as well the neutral 

axis rotation and position as the curvature of 

the deformed plane will be known. After the 

section response with the initial rotation (θ) of 
neutral axis is obtained, the routine corrects its 

value in the Y axis bending moment function. 

If the section response is bigger than Y axis 

bending moment, then increase of the neutral 

axis rotation is necessary, in the opposite case, 

to reduction it. As section response is obtained 

in relation to the reference system defined by 

the rotation of the neutral axis, the change 

from a reference system to Z-Y axes is 

necessary. The new rotation value of the 

neutral axis for next iteration is obtained by 

the expressions: 

2
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(16) 

Each loops convergence is achieved when 

the error between solicitation and the internal 

section response is considered worthless. 

5 CALCULUS ORGANIZATION 

CHART 

Described procedure is below represented 

by a flow diagram (Figure 5). 

6 APPLICATION TO A COMPOSITE 

SECTION  

In order to show the working procedure 

described before to obtain equilibrium 

position, a calculation for a 45x45 section has 

been made with a HEB-260 steel profile 

encased and 8φ12 as reinforcing framework 
placed with a 3cm layer. The strength of used 

materials have been fck = 25 N/mm
2 
for 

concrete, fyk = 275 N/mm
2 
for structural steel 

and fsk = 400 N/mm
2
 for reinforcing steel. 

As convergence criterion a maximum error 

coefficient of 2% over the axial load and 

bending moments has been accepted. 
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Figure 5: Flow diagram 

Table 1 shows the homogenized inertias of 

the section, together with its axial load and 

bending moments. 

Table 1: Initial values 

Ix 
(10

-3
 m

4
) 

Iy 
(10

-3
 m

4
) 

Nd 
(kN) 

Mxd 
(m·kN) 

Myd 
(m·kN) 

4,46504 3,77668 1.000 2.000 1.200 
 

Table 2 shows the iterations that have been 

done to get the convergence between axial 

load (Nd) and the section response value 

(described as loop 1). 

Table 2: Axial load equilibrium 

Iter φ 
(x10

-5
 rad) 

N 

(kN) 

Error 

% 

1 1,4089299 5.890,88 5,89 

2 0,704465 3.217,13 3,22 

3 0,352232 1.676,49 1,68 

4 0,176116 855,22 0,86 

5 0,264174 1.270,10 1,27 

6 0,220145 1.063,72 1,06 

7 0,209138 959,74 0,96 

8 0,203634 1.011,80 1,01 

 

The number of iterations is bigger for the 

first entrance in the loop, due to not to have a 

curvature value near enough to the solution. 

For following entrances, where the equilibrium 

curvature in the previous cycle is already 

known, the number of iterations is reduced to a 

medium value of 4.  

Table 3 and Table 4 show the iterations that 

have been done in order to obtain the 

convergence between the biaxial bending 

moments (Mz-My) and the response moments 

of the section when are taking part 

respectively, in the position (zn) and in the 

neutral axis rotation (θ) (described before as 2 
and 3 loops). 

Table 3: Equilibrium of the moment Mz 

Iter zn 
(cm) 

Mz 

(m·kN) 

Error 

% 

1 66,49448 3.160,88 1,58 

2 76,28089 1.833,97 0,92 

3 71,38769 2.040.80 1,02 

 

 

My<Myd 

Mz<Mzd Mz>Mzd 

N<Nd N>Nd 

DATES: 

Nd, Mxd, Myd 

Sección, Materiales 

Reference system change 

(equation 5) 

2

supinf ,, nn

n

zz
z

+
=  

Set θ (equation 9) 
Set zn (equation 11) 

zn,inf, zn,sup, θinf, θsup, φinf, φsup 

2

supinf φφ
φ

+
=  

2

supinf θθ
θ

+
=  

Section response for 

Zn, θ, φ 
Equation 7 → N, M 

Convergence 

criterion 

N-Nd 

Comparison 

Mz – Mzd 

Undo reference system 

change 

Comparison 

My - Myd 

Equilibrium solution: 

zsol=zn, θsol=θ, φsol=φ 

sol

M
IE

φ
=·  

φinf = φ φsup = φ 

θsup = θ 
 

θinf = θ 
 

zn,inf = zn 

 

My>Myd 

zn,sup = zn 
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Table 4: Equilibrium of the moment Y 

Iter θ 
(degree) 

My 

(m·kN) 

Error 

% 

1 54,64969 1.217,94 1,015 

 

It can be observed that initial values, 

especially rotation (θ) are near enough to the 
ending solution, due to that the iterations 

number is small.  

7 MOMENT-CURVATURE DIAGRAM 

Remaining axial load constant and 

progressively increasing biaxial bending 

moments, several curvatures of the deformed 

plane that lead to the equilibrium of the section 

can be obtained. The graphical representation 

of the pair of values M-φ, are known as 
“moment-curvature diagram”. 

As an example, and using the section 

described at point 6, has been elaborated the 

moment-curvature diagram (Figure 6) 

correspondent to a constant axial load of 1.000 

kN and the relation between two bending 

moments is Mz/My=1,66. 

 

M (x10   m·kN)

1

(x10   rad)φ -5

1

-3

2

3

4

5

2 3 4 5 6 7 8 9 10 11

6

 
Figure 6 : Moment-curvature diagram (N=1.000kN) 
 

The biggest increasing of the curvature in 

relation to the moment is due to the 

nonlinearity between both of them and makes 

the progressive stiffness loss (E·I) clear in the 

section as the bending moment is being 

increased. 

8 CONCLUSIONS 

An iterative procedure of quick 

convergence has been exposed, when starting 

from the appropriate starting values that allow 

getting the position of equilibrium of a 

reinforced concrete or composite section that 

has been requested for the axial load and 

biaxial bending moments. In that procedure 

are taken into account the different strength 

behaviours of materials that built them up 

through their nonlinear constitutive laws.  

Its implementation on software about 

nonlinear analysis of structures allows to 

modify the member stiffness in framed 

structures taking into account the nonlinear 

mechanical of the materials, in each loading 

step. 

Although the consideration of the 

mechanical nonlinearity can be taken into 

account at any material, it affects significantly 

to concrete structures due to the variation of its 

elasticity module depending on the strength 

applied and the inertia of the section, affected 

by the material cracking. 

Its incidence acquires a special importance 

in fatigue load of compressed bars design, its 

measurement is conditioned by the second 

order effects.  

As an example an application of the 

developed procedure has been shown to obtain 

the equilibrium of a steel concrete encased 

section. The tables show the small number of 

iterations needed to obtain the section 

equilibrium. This together with the current 

powerful computers allows quickly enough the 

approaching to mechanical nonlinear design of 

concrete structures. 

Finally, the moment-curvature diagram of 

the section for a constant axial load of 1.000 

kN has been represented. 

The shown procedure represents a powerful 

and quick method to structural design taking 

into consideration the mechanic nonlinear of 

materials and an effective tool to the future 

researches developing. 
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