
VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures
FraMCoS-8

J.G.M. Van Mier, G. Ruiz, C. Andrade, R.C. Yu and X.X. Zhang (Eds)

EVALUATION OF NONLOCAL APPROACHES FOR MODELLING
FRACTURE IN NOTCHED CONCRETE SPECIMENS

DIMITRIOS XENOS∗, PETER GRASSL∗ AND MILAN JIRÁSEK†

∗University of Glasgow
School of Engineering, Glasgow, UK,

Rankine Building, University of Glasgow, G12 8QQ,
e-mails: d.xenos.1@research.gla.ac.uk, peter.grassl@glasgow.ac.uk

†Czech Technical University in Prague
Department of Mechanics, Faculty of Civil Engineering

Prague,Czech Republic
e-mail: Milan.Jirasek@fsv.cvut.cz

Key words: Concrete, Fracture mechanics, Nonlocal, Meso-scale, Lattice, Fracture process zone

Abstract. In concrete, growth and coalescence of microcracks lead to formation of visible frac-
ture process zones that transfer stresses by crack bridging and aggregate interlock. Commonly, the
behaviour of the fracture process zones is modelled by nonlinear fracture mechanics approaches us-
ing stress-strain laws with strain softening. One group of nonlinear fracture mechanics approaches
suitable for computational structural analysis are nonlocal models, which lead to regular strain distri-
butions over the fracture process zones, independently of the size of finite elements. This is achieved
by evaluating the stress at each point based on weighted averages of state variables in the vicinity
of that point. However, there is no consensus how the influence of boundaries should be taken into
account by the averaging procedures. In the present comparative study, nonlocal damage models
with different averaging methods and constitutive laws are investigated, with attention focused on the
influence of boundaries. The most common approach of standard scaling is compared to averaging
procedures that depend on the stress state and on the distance to boundaries. Firstly, the nonlocal
models are calibrated by fitting stress-strain curves of one-dimensional uniaxial tension analyses to
the results of mesoscale analyses. Then, the models are applied to two-dimensional simulations of
three-point bending tests with a sharp notch, a 45◦ V-type notch and a smooth boundary without a
notch. The performance of the nonlocal models is evaluated by comparison of load-displacement
curves and dissipated energy profiles along the ligament of the beams with meso-scale results.

1 INTRODUCTION

The failure process of concrete strongly de-
pends on the meso-structure. Growth and
coalescence of microcracks lead to formation
of visible fracture process zones transferring
stresses by crack bridging and aggregate inter-
lock. The response of these fracture process
zones (FPZ) is commonly modelled by nonlin-
ear fracture mechanics using stress-strain laws

with softening. Within the group of compu-
tational methods, the various approaches pro-
posed in the literature may be divided into two
categories; namely meso-scale models describ-
ing explicitly the different phases of the hetero-
geneous material [4, 6], and macroscopic mod-
els based on an equivalent homogenized contin-
uum [1].

In meso-scale models, it is convenient to de-
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scribe the heterogeneity of the material by map-
ping the material properties of the individual
phases on a background mesh [6]. The fracture
process of the brackground mesh is often de-
scribed as the progressive failure of discrete el-
ements, such as beams or trusses [2,3]. In recent
years, one discrete element method based on
the Voronoi tessellation has been shown to be
particularly suitable for modelling fracture [5].
The meso-scale approaches provide a detailed
description of the crack patterns. However, a
very fine discretisation and multiple analyses
are required to obtain the averaged response.

Among macroscopic fracture approaches
proposed in the literature, integral-type nonlo-
cal models describe the fracture process zones
as regions of highly concentrated but still regu-
lar strain [1,7]. Interactions at the mesoscale are
reflected by weighted spatial averaging of inter-
nal variables. However, there is no consensus
on how the averaging should be adjusted near
the physical boundary of the body. Commonly
used rescaling procedures may result in exces-
sive spurious energy dissipation close to bound-
aries [9]. In alternative approaches, which have
the potential to reduce this spurious effect, the
averaging procedure depends on the distance to
boundaries [10,11] and on the stress state of the
material point [12].

In the present work, three nonlocal damage
models representing standard, distance-based
and stress-based averaging procedures are ap-
plied to the modelling of fracture in notched
concrete beams subjected to three-point bend-
ing. Initially, the models are calibrated by fit-
ting meso-scale analysis results obtained for a
problem independent of boundaries [4]. This
calibration is thus unaffected by the type of
averaging procedure used. Then, the nonlo-
cal models are applied to simulations of two-
dimensional notched beams subjected to three-
point bending, for which the averaging proce-
dure is expected to influence the response. The
results of these analyses are again compared to
the results of meso-scale analyses in the form of
load-displacement curves and dissipated energy
profiles.

2 MESO-SCALE MODEL
In this work, a meso-scale description of the

fracture process in three-point bending tests has
been used to create reference results for the
evaluation of nonlocal models presented in Sec-
tion 3. In this meso-scale approach, aggregates,
interfacial transition zones (ITZ) and mortar are
modelled as separate phases with different ma-
terial properties. For the mortar and ITZ, a ran-
dom field of tensile strength and fracture en-
ergy is applied. This meso-scale description has
been performed by a lattice approach in com-
bination with a damage mechanics model to
describe the mechanical response of the three
phases [5]. Since it had been used previously
for the determination of fracture process zones
of concrete subjected to uniaxial tension [4], it
is here only briefly described.

2.1 LATTICE APPROACH
The nodes of the lattice are randomly lo-

cated in the domain, subject to the constraint
of a minimum distance, which is independent
of the heterogeneity of the material. The lattice
elements are obtained from the edges of the tri-
angles of the Delaunay triangulation of the do-
main (solid lines in Fig. 1a), whereby the mid-
dle cross-sections of the lattice elements are the
edges of the polygons of the dual Voronoi tes-
sellation (dashed lines in Fig. 1a).

lattice elementcross section inclusionmatrix

interface

(a) (b)

Figure 1: (a) Set of lattice elements (solid lines) with
middle cross-sections (dashed lines) obtained from the
Voronoi tessellation of the domain; (b) Arrangement of
lattice elements around inclusions.

Each lattice node possesses three degrees of
freedom, namely two translations and one ro-
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tation. The degrees of freedom of the lattice
nodes are linked to two displacement disconti-
nuities at the centre of the middle cross-section
of the element. The displacement discontinu-
ities are transformed into strains by smearing
them out over the distance between the two lat-
tice nodes. The strains are related to the stresses
by an isotropic damage model describing the
constitutive response of ITZ and mortar.

The spatially varying material properties that
originate from the heterogeneity of the material
are reflected at two levels. Large aggregates
are modelled directly by placing lattice nodes
at special locations, such that the middle cross-
sections of the lattice elements form the bound-
aries between aggregates and mortar (Fig. 1b).
The heterogeneity represented by finer particles
is described by autocorrelated random fields of
tensile strength and fracture energy, which are
assumed to be fully correlated. The random
fields are characterised by an autocorrelation
length that is independent of the spacing of lat-
tice nodes. Discretely modelled aggregates are
assumed to be linear elastic.

3 MACROSCOPIC MODEL
In this section, the macroscopic nonlocal

isotropic damage mechanics approaches are de-
scribed. The constitutive law and the differ-
ent averaging procedures are described in Sec-
tions 3.1 and 3.2, respectively.

3.1 Damage model
The total stress-strain relationship for the

isotropic damage model is

σ = (1− ω)De : ε = (1− ω)σ̃ (1)

where σ is the total stress tensor, ω is the dam-
age variable, De is the elastic stiffness based on
Young’s modulus E and Poisson’s ratio ν, ε is
the strain and σ̃ is the effective stress tensor.
Damage is driven by the history variable κd and
is determined by

ω (κd) =

{
1 − exp

(
− 1
md

(
κd
εmax

)md
)

, κd ≤ ε1

1 − ε3
κd

exp

− κd−ε1
εf

[
1+

(
κd−ε1
ε2

)n]
 , κd > ε1

(2)

where

md =
1

ln(Eεmax/ft)
(3)

The parameter εmax is the uniaxial strain at peak
stress. Furthermore,

εf =
ε1

(ε1/εmax)md − 1
(4)

and

ε3 = ε1 exp

(
− 1

md

(
ε1
εmax

)md
)

(5)

This damage law exhibits pre- and post-peak
nonlinearities in uniaxial tension. The history
variable κd, used in (2) to obtain the damage pa-
rameter, represents the maximum level of non-
local equivalent strain ε̄eq reached in the history
of the material. It is determined by the loading
function

f (ε̄eq, κd) = ε̄eq − κd (6)

and by the loading-unloading conditions

f ≤ 0, κ̇d ≥ 0, κ̇df = 0 (7)

The nonlocal equivalent strain is defined as

ε̄eq (x) =

∫
V

α (x, ξ) εeq(ξ)dξ (8)

Here, x is the point at which the nonlocal equiv-
alent strain ε̄eq is evaluated as a weighted aver-
age of local equivalent strains εeq at all points
ξ in the vicinity of x within the integration do-
main V . According to the standard scaling ap-
proach, the weight function

α (x, ξ) =
α0 (x, ξ)∫

V
α0 (x, ξ) dξ

(9)

is constructed from a function α0(x, ξ) nor-
malised by its integral over the integration do-
main V such that the averaging scheme does not
modify a uniform field: The function

α0 (x, ξ) = exp

(
−‖x− ξ‖

R

)
(10)
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(a) (b) (c)

Figure 2: Three approaches to consider boundaries for nonlocal averaging: (a) standard, (b) distance-based and (c) stress-
based rescaling.

is defined here as an exponential (Green-type)
function, with parameter R reflecting the inter-
nal material length. The local equivalent strain
in (8) is

εeq =
1

E
max
I=1,2,3

σ̃I (11)

where σ̃I refers to the principal components
of the effective stress tensor introduced in
(1). This constitutive law results in a Rankine
strength envelope.

3.2 Approaches for treating boundaries
This section presents three different methods

to treat boundaries. They are labelled as stan-
dard, distance-based and stress-based approach
and represent groups of models presented in
the literature (Fig. 2). Although the distance-
based and stress-based averaging approaches
are based on concepts previously reported in the
literature, they have not been presented before
in this form.

For the standard rescaling approach, the
weight function α(x, ξ) in (9) is used, with the
integration domain V in the denominator of (9)
corresponding to the specimen under consid-
eration. Rescaling of the weight function ac-
cording to (9) ensures that the nonlocal operator
does not alter a uniform field.

For the distance-based approach, the
weight function is also rescaled, but α0(x, ξ)
in (10) is made dependent on the minimum

distance of point x to the specimen boundary
(Fig. 2b). The new function is

α0 (x, ξ) = exp

(
−‖x− ξ‖
γ (x)R

)
(12)

where

γ (x) =

{
1 , d(x) ≥ tR
1− β
tR

d(x) + β , d(x) < tR
(13)

Here, β and t are parameters of the distance-
based rescaling approach and d(x) is the min-
imum distance of point x to the specimen
boundary. For a material point x lying on
the boundary (d(x) = 0) the function yields
γ (x) = β. On the other hand, when the dis-
tance is greater than tR, γ (x) = 1 and the
present distance-based approach gives the same
result as the standard rescaling approach.

The stress-based rescaling approach
(Fig. 2c) exploits a transformation matrix

T =

(
cos(θ) sin(θ)
− sin(θ)/γ cos(θ)/γ

)
(14)

which depends on the effective stress σ̃. Angle
θ = atan (n1y/n1x) characterizes the direction
of maximum principal effective stress σ̃1, with
n1y and n1x being the components of the corre-
sponding eigenvector n1. The new function

α0 (x, ξ) = exp

(
−‖T · (ξ − x)‖

R

)
(15)

is affected by the effective stress. In equation
(14), γ is a scaling factor, defined as
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γ =

 β + (1− β)

(
〈σ̃2〉
σ̃1

)2

, σ̃1 > 0

1 , σ̃1 ≤ 0

(16)

Here, β is a parameter of this approach, σ̃2 is the
second principal effective stress and 〈·〉 denotes
the MacAuley brackets (positive part operator).
For instance, for uniaxial tension the principal
effective stresses are σ̃1 = σ̃t and σ̃2 = 0, which
gives γ = β. On the other hand, for equi-biaxial
tension we have σ̃1 = σ̃2 = σ̃t, so that γ = 1,
which coincides with the standard rescaling ap-
proach.

4 ANALYSES
The nonlocal damage model combined with

the different boundary approaches was applied
to 2D plane-stress analyses of notched three-
point bending tests. The geometry and the load-
ing setup are shown in Fig. 3. Three bound-
aries in the form of a sharp notch with α = 0◦,
an angular notch with α = 45◦ and an un-
notched boundary with α = 90◦ were consid-
ered. The boundary types were chosen so that
the performance of the boundary approaches
(Section 3.2) could be compared.

Figure 3: Geometry and loading setup of the notched
beams subjected to three point bending.

Firstly, the parameters of the nonlocal model
were calibrated, so that the model results for 1D
tensile loading were in agreement with meso-
scale results reported in [4]. For this calibration
step, the results are not affected by the boundary
approaches. This calibration resulted in elas-
tic parameters of E = 29.6 GPa and ν = 0.2.
Furthermore, the parameters of the damage law

are ft = 2.86 MPa, εmax = 0.000198, ε1 =
0.00023 and ε2 = 0.007. Finally, the nonlocal
radius is R = 0.004 m. These parameters are
the same as in [4]. The results of the calibra-
tion are shown in Fig. 4 in the form of stress-
strain curves and dissipated energy across the
fracure process zone. The stress-strain curve of
the nonlocal model agrees well with the meso-
scale results. The energy profile of the nonlocal
model fits well the width of the FPZ obtained
from meso-scale analyses but slightly underes-
timates the maximum energy dissipation in the
middle of the specimen.

In the second step, the additional parame-
ters of the distance-based model were chosen
as β = 0.35 and t = 1 and for the stress-
based model as β = 0.35. The results of the
three nonlocal approaches for the three beam
geometries are compared to meso-scale results
in Figs. 5–7 in the form of load-displacement
curves and dissipated energy profiles along the
ligament length of the beam. As seen in parts
(a) of the figures, the peak load of the meso-
scale analysis is overestimated by the standard
nonlocal model for all beam geometries. For
α = 0◦ and 45◦, this overestimation is ac-
companied by a much higher dissipation near
the notch than in the meso-scale analyses; see
Figs. 5b and 6b. The dissipated energy profiles
for the stress-based and the distance-based are
in much better agreement with the meso-scale
results for these beam geometries. For α = 90◦

all models slightly overestimate the peak load.
For the standard and stress-based aproach, the
dissipated energy along the ligament is overes-
timated as well; see Fig. 7b. However, the en-
ergy peak near the notch, as observed for the
α = 0◦ and 45◦ for the standard approach, is
not present.

For both the distance and stress-based ap-
proach, the energy peaks close to the notch ob-
served with the standard approach are removed,
but the dissipated energy along the ligament is
overestimated. Nevertheless, the stress-based
approach requires only one parameter. Finally,
the standard approach does not require any ad-
ditional parameters, but suffers from excessive
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Figure 4: 1D calibration: (a) stress-strain curve, (b) Dissipated energy across the fracture process zone in the last loading
step.
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Figure 5: Comparison of the results of the three nonlocal approaches and meso-scale analysis for different notch angles
α = 0◦: (a) Load-displacement curves and (b) Dissipated energy profiles.
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Figure 6: Comparison of the results of the three nonlocal approaches and meso-scale analysis for different notch angles
α = 45◦: (a) Load-displacement curves and (b) Dissipated energy profiles.
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Figure 7: Comparison of the results of the three nonlocal approaches and meso-scale analysis for α = 90◦: (a) Load-
displacement curves and (b) Dissipated energy profiles.

energy dissipation close to the notch.
The parameter β in both distance-based and

stress-based methods influences the amount of
nonlocal interactions in the weight function
α(x, ξ). A small value of β reduces the non-
local contribution of the points ξ in the vicinity
of the material point x. If β is chosen too small,
it results in a “local” definition of the nonlo-
cal equivalent strain ε̄eq. Consequently, damage
may localise in a single finite element or a sin-
gle row of elements resulting in irregular strain
profiles and mesh-dependent results. Therefore,
a minimum value of β = 0.35 was enforced for
the distance and stress-based approach so that
the width of the localisation zone was larger
than a row of finite elements. If a very fine
mesh was used, β could be reduced further and
it could be expected that the stress-based ap-
proach would yield an even better agreement
with the meso-scale results.

5 CONCLUSIONS
In the present study, a nonlocal isotropic

damage model with different averaging proce-
dures was applied to the modelling of fracture
in three-point bending test with different notch
geometries. In the analyses of the sharp notched
and V-notched beams, the standard approach
overpredicts the energy dissipation close to the
notch, which results in an overestimation of the
load capacity. For the stress-based and distance-
based averaging approaches, the energy dissipa-

tion close to the notch is reduced, which gives
a better agreement with the meso-scale results.
For the unnotched case, the dissipated energy
is in reasonable agreement for all approaches.
The distance-based approach requires two more
input parameters than the standard approach,
whereas the stress-based approach requires only
one additional parameter over the standard ap-
proach.

In future work, the stress-based approach
will be combined with a more advanced
damage-plasticity model which can describe the
failure of concrete in multiaxial stress states.
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semblies. Géotechnique 29:47–65.

7



Dimitrios Xenos, Peter Grassl and Milan Jirásek
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scale approach to modelling the fracture
process zone of concrete subjected to
uniaxial tension. International Journal of
Solids and Structures 47:957–968.

[5] Bolander, J.E. and Saito, S., 1998. Frac-
ture analysis using spring networks with
random geometry. Engineering Fracture
Mechanics 61:569–591.

[6] Schlangen, E. and van Mier, J. G. M.,
1992. Simple lattice model for numerical
simulation of fracture of concrete mate-
rials and structures. Materials and Struc-
tures 25:534–542.

[7] Pijaudier-Cabot, G. and Bažant, Z.P.,
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