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Abstract. Shear design for reinforced concrete beams is of significant technological interest. Nu-
merous experimental and numerical work have been developed to predict the shear resistance of
reinforced beams. In this work, we consider the fracture path as the equilibrium trajectory resulted
from external loads and internal forces; assuming a linear-decreasing cohesive law for concrete bulk,
fully-developed fracture process zone size as a material parameter, a perfect plastic bond-slip rela-
tion for the interface between steel rebar and concrete, analytical predictions for the crack path and
shear resistance for beams with arbitrary geometry, longitudinal and/or shear reinforcement ratio, are
derived and validated against available experimental data, the agreement is remarkable.

1 INTRODUCTION

Shear design in reinforced concrete struc-
tures is of significant technological interest, as
a result, numerous models have been devel-
oped to estimate the shear resistance of rein-
forced beams, for an incomplete list, see [1,
2, 3, 4, 5, 6, 7, 8, 12, 9, 22] and the references
within. Among these models, the first widely-
applied is the Modified Compression Field The-
ory (MCFT) developed by Vecchio and cowork-
ers [2, 4, 8, 12, 22], which is actually a smeared
rotating crack model with compression soften-
ing and tension stiffening. The size effect model
by Bazant and Kim [1], starting from a prede-
termined fracture path, neglecting multiple ten-
sile cracks and the dowel action of reinforce-
ments, was applied to diagonal tension failure
of longitudinally reinforced concrete beams;
some years later Karihaloo [7] extended it to
beams with stirrups. Along this line, the two-
parameter fracture model by Jenq and Shah [6]

assumes a diagonal-tension failure and takes
Mode-I fracture toughness as the crack growth
criterion. The third group is based on the ficti-
tious crack approach by Gustasson and Hiller-
borg [5].

In this work, we assume the concrete bulk
as an elastic material until cracking, the tensile
strength as the crack initiation and propagation
criterion, the concrete fracture is governed by
a linear-decreasing cohesive law. In this way,
multiple potential cracks are considered natu-
rally, the propagation or arrest of each individ-
ual crack as external load increases can also be
predicted.

The rest of this paper is structured as follows.
The layout of the physical problem is explained
in Section 2. The fracture path and shear resis-
tance are calculated analytically and validated
in Section 3. Finally, relevant conclusions are
drawn in Section 4.

1



Saucedo, Yu and Ruiz

2 ANALYTICAL FORMULATION OF A
COHESIVE CRACK PROPAGATION
IN A BEAM WITH REINFORCE-
MENTS
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Figure 1: Possible stress distribution along distinct frac-
ture path and the function that defines each potential
crack x = ϕ(y).

Consider a beam of rectangular section with
longitudinal and inclined reinforcements, all
possible crack trajectories described by a series
of functionals x = φ(y) can be determined from
the equilibrium states, see Fig. 1. Thus the in-
clination angle α of the crack path defined by

the non-dimensional function x∗ = ϕ(y∗) with
respect to the x-axis can be calculated accord-
ingly

sinα =
1√

ϕ′(y∗)2 + 1
(1)

cosα =
ϕ′(y∗)√
ϕ′(y∗)2 + 1

(2)

where we have normalized all length variables
by the beam depth H , i.e. x∗ ∈ [0, η], y∗ ∈
[0, 1]. Through equilibrium conditions, the flex-
ural moments with respect to the neutral axis,
the shear forces in the vertical direction and
self-balance between compressive and tensile
forces in the horizontal direction can be written
as follows

Mi = Mc +Mt (3)
Qy = Fcy + Fty (4)
Fcx = Ftx (5)

The compressive and tensile forces and their
non-dimensional counterparts are calculated as
follows

Fc = σc
y − yn
H − yn

1

sinα
(6)

Ft =

(
yn − y
yn − yud

+
y − ytip
yud − ytip

)
1

sinα
(7)

F ∗c =
Fc

ftBH
= σ∗c

y∗ − y∗n
1− y∗n

√
ϕ′(y∗)2 + 1 (8)

F ∗t =
Ft

ftBH
=
√
ϕ′(y∗)2 + 1

(
y∗n − y∗

y∗n − y∗ud
+

y∗ − y∗tip
y∗ud − y∗tip

)
(9)

Where yn, yud and ytip are the vertical coor-
dinates of the neutral axis, the undamaged ma-
terial (end of the FPZ, or the cohesive crack tip)
and the tip of the stress-free crack respectively.

Replacing in Eqn. 4, we get the equilibrium
equation:
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2

Q∗(x0) =
Q(x0)

ftBH
=

∫ 1

y∗n

y∗ − y∗n
1− y∗n

σ∗cϕ
′(y∗)dy∗ +

∫ y∗n

y∗ud

y∗n − y∗d
y∗n − y∗

ϕ′(y∗)dy∗

+

∫ y∗ud

y∗tip

y∗ − y∗tip
y∗ud − y∗tip

ϕ′(y∗)dy∗ + f ∗y ρi sin θ (10)

From the compatibility of stresses we get

σ∗c =
σc
ft

=
1− y∗n

y∗n − y∗tip − 1/β
(11)

2.1 Fracture trajectory

Consider ϕ as a known function, plug y∗n and σ∗c
into Eqn. 10, we can solve to get the function ϕ
as follows

ϕ(y∗) = a1

(
a2y

∗3 + a3y
∗2 + a4y

∗)+ a5 (12)

We impose two limit conditions to determine
the five coefficients a1 to a5, one is when the
longitudinal reinforcement ratio tends to infin-
ity, the fracture tends to the minimum shear
point, the other is when the longitudinal and in-
clined ratios tends to zero, the fracture tends to

the plain concrete fracture previously known.

a5 =
x∗0
η

=
x0

ηH
(13)

a4 = 2ββ1f
∗
c

Q∗(x0)− σ∗ir
1 + 2σ∗lr + σ∗ir

(14)

a3 =
1 + 2σ∗lr

3 + σ∗3ir
24

a4 (15)

a2 =
2

3
(
1 + σ∗ir

2
)a3 (16)

a1 =
x∗null − x∗0

a2γ3 + a3γ2 + a4γ
(17)

γ = 1 +
ftB(1 + σ∗ir)

f ∗c q
e−σ

∗
lr (18)

σ∗lr = ρlf
∗
y (19)

σ∗ir = 0.75ρif
∗
y sin θ (20)

where q is the distributed load per unit of length,
x∗null in a three point bending test is 0.5, σ∗lr and
σ∗ir are the normalized average stress of the lon-
gitudinal and inclined reinforcements Eqn. 19,
and σ∗ir respectively. The angle θ is that of the
inclined reinforcement, defined as 45o.

Longitudinal

 reinforced beam

Plain concrete beam

Lightly longitudinal

 reinforced beam

Limit of inclined

 reinforcement

Limit of long.

 reinforcement

Figure 2: Sensitivity of the reinforcement ratio on the crack path initiated at a quarter span from the support.
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Figure 3: Limit curves of the fracture path initiated from several locations when there is zero or infinite reinforcments.

It needs to be pointed out that, in the limit
case of heavy longitudinal or inclined reinforce-
ment, the function ϕ can be significantly sim-
plified. For example, the limit curve for longi-
tudinal reinforcement could be described by the
Eqn. 12 with the coefficients a1l to a5l. Those
limit curves are plotted in Fig. 3.

a5l =
x∗0
η

=
x0

ηH
(21)

a4l = 2ββ1
f ∗cQ

∗(x0)

1 + 2T ∗0
(22)

a3l = a4l

(
1

24
+

1

12
T ∗0

3

)
(23)

a2l =
2

3
a3l (24)

a1l =
x∗null − x∗0

a2l + a3l + a4l

(25)

where T0, which is the reinforcement strength
ρlfy, fitted as 10 MPa, sets the limit curve

for strongly reinforced beams, beyond which,
the crack trajectory will coincide with the limit
curve as shown in Fig. 3.

P

β = 1 β = 5 β = 10 β = 100

Figure 4: Sensitivity of the parameter β for reinforced
(left) and plain (right) concrete beams.

The sensitivity of the parameter β on the tra-
jectory of a crack initiated from a quarter span
to either of the support for a reinforced or plain
concrete beam is shown in Fig. 4. Note that
when β increases, the crack tends to move away
from the loading point.

2.2 The external load that corresponds to
each possible crack trajectory

Once the trajectory of crack initiated from a
position x0 is define by Eqn. 12, we can ana-

lytically obtain the corresponding external load
through equilibrium considerations. The flex-
ural moment generated by compressive or ten-
sile forces and the longitudinally rebars are il-
lustrated in the following equations.

• Moment generated by the compressive tractions

M∗
c =

Mc

BH2ft
=

1

2
σ∗c

√
(y∗n − y∗cgc)2 + (x∗n − x∗cgc)2

√
(1− y∗n)2 + (x∗h − x∗n)2 (26)

where y∗cgc = y∗n + 2
3
(1− y∗n), x∗cgc = ϕ(y∗cgc), x

∗
h = ϕ(1) and x∗n = ϕ(y∗n)

• Moment generated by the tensile tractions

M∗
t =

Mt

BH2ft
=

1

2

√
(y∗n − y∗cgt)2 + (x∗n − x∗cgt)2

√
(y∗n − y∗tip)2 + (x∗n − x∗tip)2 (27)
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where y∗cgt = 1
2
(y∗n − y∗tip), x∗cgt = ϕ(y∗cgt), x

∗
tip = ϕ(y∗tip) and x∗n = ϕ(y∗n)

• Moment generated by the longitudinal rebars

M∗
lr =

Mlr

ftBH2
= ρlf

∗
y (y
∗
n − c∗) exp[−ϕ′(y∗tip)] (28)

where c∗ is the normalized cover length. The moment given by the inclined reinforcement can
also be easily calculated the same way.

• Internal moment
M∗

i = M∗
lr +M∗

t +M∗
c (29)

For the case of a three point bending config-
uration, the external load P is related with the
internal moment as follows:

P ∗ =
P

ftBH
=

2M∗
i

x∗0
(30)

The above expression, Eqn. 30, slightly
modified, can be extended to any load distri-
bution on the top surface. Therefore, we have
analytically determined the load capacity for a
beam with arbitrary load, reinforcement ratio or
span-depth ratio. For the purpose of clarifica-
tion, we classify the concrete beams into three
categories, those slightly reinforced with lon-
gitudinal rebars, those heavily reinforced with
longitudinal rebars and those have both longitu-
dinal and inclined rebars.

Beams lightly reinforced with longitudinal
bars

We consider a beam is lightly reinforced
when the reinforcement rate is lower than T0.
The technological application of this kind of
beams is the prevention of brittle failure. In
this case, the compressive stress at the top of the
beam has not reached the compressive strength,
and its value is determined through equilibrium
equations. By comparing the failure load for
various trajectories initiated from different lo-
cations of the beam, the minimum failure load
is given by the trajectory started at the position
S/4, the ultimate shear force is given by Eq. 31.

V ∗u =
Vu

BHft
=
dcy
∗

3η

σ∗2c
σ∗c + 1

+ σ∗yρl
1− c∗

η
(31)

d∗cy =

(
1− 1

2β

)

σ∗c = f ∗y ρl +

√
1 +

4d∗cy
f ∗y ρl

(32)

where c∗ is the normalized covering length
c/H . Note that the parameters such as η, β y
lfpz all play a role in the failure load.

Beams strongly reinforced with longitudinal
bars

In contrast, a beam is considered as strongly
reinforced when the reinforcement rate is higher
than T0. In this case, the compressive stress at
the top of the beam attains the strength fc. The
shear force for failure is obtained as follows

V ∗u =
Vu

ftBH
=

1

2

PI
ftBH

+ (1 + f ∗c )d
∗2
cy

tan2 α

2η
(33)

where

d∗cy =

(
1− 1

2β

)
(34)

α = α0 ln η (35)

where α0 = 25.35, and PI is the peak load
for a Mode-I failure of the same beam under
three-point-bend load configuration. Note that
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the first term in Eq. 33 is influenced by mate-
rial properties, geometry and reinforcement ra-
tio, whereas the second term is only influenced
by the material properties and the geometry, not
the reinforcement ratio.

Beams reinforced with longitudinal and in-
clined bars.

In this case, the beams are reinforced with
both kind of reinforcements, the corresponding
shear force of failure is written as follows:

V ∗u =
Vu

ftBH
=

f ∗c d
∗2
cy tan2 α

3η − 6d∗cy tanα
(36)

d∗cy =

(
1− 1

2β

)

α =

[
α0 +

(
c∗0f
∗
y ρlρi

η
− 1

)]
ln η(37)

where c∗0 =
0.0003f2

t

0.08f0.5
c

and α0 = 25.35o. Part of
the term c0 is minimum shear reinforcement for
a beam according with the Euro Code 2.

3 VALIDATION AND TECHNOLOGI-
CAL APPLICATION

In this Section, we first validate the predicted
crack path against the experimental ones given
by Carpinteri et al. [17]. Then we compare the
failure load obtained from Eqns. 33, 31 and 36
to that given by the Euro Code 2 [20] and the
Model Code.

3.1 Validation of the crack path
In order to verify the ability of Eq. 12, we

compare various crack trajectories initiated at
different locations of the beam with the experi-
mentally observed ones by Carpinteri et al. [17].
The material properties and beams dimensions
are given in Tab. 1. The beams were reinforced
with rebars of diameter of 8, 12 and 20 mm re-
spectively, the resulted reinforcement ratios are
of 0.25% (1φ8), 0.50%(2φ8), 1.12%(2φ12) or
3.14%(2φ20).

Table 1: Material properties and beam geometry for the
concrete tested by Carpinteri et al. [17].

E [GPa] fc [MPa] ft [MPa] GF [N/m]
33.1 49.4 4.2 111.5

lfpz [mm] B [mm] H [mm] S[mm]
18 200 100 1200

Saucedo et al Shear

Figure 6: Beams with the same geometry and different longitudinal reinforcement ratio tested by
Carpinteri et al [?, ?]

Figure 7: Beams with different inclined and longitudinal reinforcement ratios tested by Ikegawa
et al. [?]

11
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Figure 6: Beams with the same geometry and different longitudinal reinforcement ratio tested by
Carpinteri et al [?, ?]

Figure 7: Beams with different inclined and longitudinal reinforcement ratios tested by Ikegawa
et al. [?]

11
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Figure 6: Beams with the same geometry and different longitudinal reinforcement ratio tested by
Carpinteri et al [?, ?]

Figure 7: Beams with different inclined and longitudinal reinforcement ratios tested by Ikegawa
et al. [?]
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Figure 6: Beams with the same geometry and different longitudinal reinforcement ratio tested by
Carpinteri et al [?, ?]

Figure 7: Beams with different inclined and longitudinal reinforcement ratios tested by Ikegawa
et al. [?]

11

Figure 5: Predicted and observed crack trajectories by
Carpinteri et al. [17] for beams with the same geometry
and different longitudinal reinforcement ratios.

3.2 Validation of the load capacity

In this section, we validate our analytical
model against experimental results for the load
capacity of beams lightly or strongly reinforced
with longitudinal rebars, or beams with both
longitudinal and inclined rebars. The material
properties and beam dimensions as well as rein-
forcement ratios for different beams are shown
in Tabs. 2-4 respectively.
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Table 2: Experimental results of Mathey et al. [29] for lightly longitudinal reinforced concrete beams.

Test No. η H [mm] B [mm] fc [MPa] fy [MPa] ρl [%]
1 1.29 403 203 24 500 0.75
2 1.29 403 203 26 500 0.75
3 1.29 403 203 27 500 0.75
4 1.29 403 203 26 500 0.75
5 1.29 403 203 27 500 1.16
6 1.29 403 203 26 500 1.16
7 1.29 403 203 23 500 1.17
8 1.29 403 203 23 500 1.17

Table 3: Experimental results of Moody et al [30] for strongly longitudinal reinforced concrete beams.

Test No. η H [mm] B [mm] fc [MPa] fy [MPa] ρl
1 1.14 553 178 18 500 2.72
2 1.14 553 178 21 500 2.72
3 1.14 553 178 22 500 2.72
4 1.14 553 178 23 500 2.72
5 1.14 553 178 18 500 3.46
6 1.14 553 178 23 500 3.46
7 1.14 553 178 24 500 3.46
8 1.14 553 178 25 500 3.46
9 1.14 553 178 21 500 4.25

10 1.14 553 178 22 500 4.25
11 1.14 553 178 22 500 4.25
12 1.14 553 178 25 500 4.25

Table 4: Experimental results of Kazemi et al [21] for longitudinal and inclined reinforced concrete beams

Test No. η H [mm] B [mm] fc[MPa] fy [MPa] ρl [%] ρi/ρmin
1 4.85 330 200 38.3 225 1.68 2.0
2 4.64 345 200 38.3 225 1.07 2.0
3 4.44 360 200 38.3 922 0.18 8.1
4 4.64 345 200 38.3 922 0.26 8.1
5 4.80 333 200 38.3 922 0.34 8.1
6 4.76 336 200 38.3 922 0.35 8.1
7 4.85 330 200 38.3 922 0.41 8.1
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The comparison are illustrated in Figs. 6-8
for those beams tested by Mathey et al. [29],
Moody et al [30] and Kazemi et al. [21] re-
spectively. It is noteworthy that, our analytical
model gives a better prediction than the Euro
Code 2 and Model Code for all the examples
demonstrated.
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Figure 6: Prediction for lightly reinforced beams with
longitudinal rebars tested by Mathey et al. [29].
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Figure 7: Prediction for strongly reinforced beams with
longitudinal rebars tested by Moody et al. [30].
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Figure 8: Prediction for beams with both longitudinal and
inclined rebars, tested by Kazemi et al. [21].

4 CONCLUSIONS
Assuming a linear-decreasing cohesive law

for concrete fracture, a perfect bond-slip rela-
tion for the steel-concrete interface, we have
developed an analytical method to predict the
shear resistance for a beam reinforced with any
ratio of longitudinal and transversal rebars. The
formulation has been validated against numer-
ous experimental results for fracture path and
ultimate loads. The agreement is remarkable.

NOMENCLATURE
• ft, fc andGF : Concrete tensile, compres-

sive strength and specific fracture energy.

• wc: Critical opening displacement in a lo-
cally mode-I cohesive crack.

• lfpz: Fully-developed fracture process
zone length defined as EGF

ftfc
.

• H , S and B: Beam height, span and
width.

• η: Ratio between beam span and beam
height S

H
.

• c and c∗: Reinforcement cover length and
the normalized one c/H .

• β: Brittleness number defined as H
lfpz

.
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• β1: Brittleness number in the width direc-
tion defined as B

lfpz
.

• y∗: Non-dimensional coordinate in the
vertical direction y

H
∈ [0, 1].

• yn: Location of the neutral fiber.

• ycgc: Distance between the resulted com-
pressive force and the neutral axis.

• yud: Location of the cohesive crack tip.

• ytip: Location of the stress-free crack tip.

• x∗: Non-dimensional coordinate in the
horizontal direction x

H
∈ [0, η].

• ϕ(y∗): The function that describes the
crack trajectory.

• θ: The inclination angle of the shear rein-
forcement with respect to the x-direction.

• α: Local inclination angle (w.r.t. the x-
axis) of the crack trajectory.

• Al and Ai: Area sum of the cross-section
of the longitudinal and inclined rebars.

• ρl: Longitudinal reinforcement ratio Al

BH
.

• ρi: Incline/shear reinforcement ratio Ai

BH
.

• f ∗y : Steel yield strength normalized by
concrete tensile strength fy

ft
.

• σ∗c : Compressive stress normalized by
concrete tensile strength σc

ft
.

• σ∗lr: f ∗y ρl.

• σ∗ir: 0.75f ∗y ρi sin θ.

• M and M∗: Moment with respect to the
fiber neutral, M∗ = M

ftBH2 .

• Mi: Internal moment (calculated at a sec-
tion).

• Mc and Mt: Flexural moment generated
by the compressive and the tensile trac-
tions.

• P and P ∗: External load under a three-
point-bend configuration, P ∗ = P

ftBH
.

• Q(x) and Q∗(x∗): Shear force at location
x, Q∗(x∗) = Q(x/H)

ftBH
.
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