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Abstract. Long term exposure to high temperature strongly affects the durability and safety of con-
crete structures due to the severe degradation process that takes place in this composite material. In
effect, most of the relevant macroscopic mechanical features of porous materials like concrete such as
cohesion, friction, strength, stiffness and ductility, strongly depend on the temperature, temperature
gradient and humidity, as well as on the governing stress state. At the macroscopic level of observa-
tion, high temperature exposures cause significant modifications in the chemical features of cement
paste. From the predictive analysis stand point, robust and reliable constitutive theories are required
to accurately simulate the complex failure processes of concrete material subjected to high tempera-
ture exposure. In this work, a thermodynamically consistent gradient poroplastic theory for concrete
under high temperature is proposed. Herein concrete is considered as a closed porous medium while
the relevant thermo-chemo-mechanical couplings that take place in the material subjected to temper-
ature effects are taken into account. Thereby, the dehydration of cement paste when is subjected to
high temperature exposure is the main responsible for the degradation processes of fundamental me-
chanical properties. Regarding the gradient formulation a restricted form is considered whereby the
state variables are the only ones of non-local character. A Temperature-Dependent Leon-Drucker-
Prager (TD-LDP) strength criterion is proposed for porous material under high temperature fields
and a numerical analysis by means of finite element simulations is presented to show the predictive
capabilities of the proposed approach.

1 INTRODUCTION

Concrete exposures to high temperature may
take place both in the case of accidents such as
explosions or fire and under serviceability con-
ditions such as furnaces structures, chimneys,
kiln foundations, pressure vessels, etc. Con-
crete subjected to high temperature undergoes
dramatic changes at microscopic level. One

of the most important is the cement paste de-
hydration that at macroscopic level results in
stiffness and strength losses [1]. Actually, un-
der temperature levels below 200◦C, concrete
shows no significant damage, because the re-
sulting effects are only restricted to the evapo-
ration of free water in the pores network. From
200◦C starts the dehydration of the hydrated
calcium silicates (CSH), essential components
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that strongly contribute to the paste strength.
Above 400◦C takes place the calcium hydroxide
(CH) dehydration and beyond 600◦C also starts
the rock aggregates degradation, being more
vulnerable the siliceous than the calcareous
ones, in terms of thermal damage. In this paper,
the CSH dehydration is considered as the main
concrete mechanical degradation cause. There-
fore, high temperatures are understood as those
that exceed 200◦C. Then, water migration and
water vapor through concrete pores processes
are neglected. This means that the spalling on
concrete surface due to the increasing pore pres-
sure and thermal gradient is also neglected be-
cause this is a consequence of the water migra-
tion and water vapor dynamic processes. Ac-
curate predictions of concrete failure behavior
when subjected to high temperature require re-
liable theoretical frameworks, capable to more
realistically reproduce the dramatic changes at
microscopic levels by means of representative
parameters. In this sense, the mechanics of
continuum porous media, the thermodynamic
laws and the concepts of non-local materials
[2–6] define the most effective set of theoretical
frames to approach this complex problem. Non-
local effects in constitutive models lead also to
objective predictions of post-peak behaviors re-
garding finite elements mesh density and orien-
tation. On the other hand, they introduce a char-
acteristic length which allows more accurate
modeling of the pressure and thermal depen-
dency of concrete failure processes in thermo-
chemo-mechanical coupled problems.

The thermodynamically consistent formula-
tion presented in this paper is based on a re-
stricted gradient theory developed by Svedberg
y Runesson [7] for the case of J2 classical con-
tinuous media, expanded later by Vrech and
Etse [8] for cohesive-frictional materials and re-
cently by Mroginski et. al. [9] for porous me-
dia. This gradient theory assumes that a ther-
modynamic state for dissipative materials un-
der isothermal processes is completely defined
by the elastic strain and a finite number of in-
ternal softening/hardening plastic variables, be-
ing these latter the only of non-local charac-

ter. In this formulation, the dehydration degree,
which is considered the controlling-parameter
of the mechanical integrity, is incorporated as
an additional internal variable, representing the
chemical state. After presenting the fundamen-
tal equations of the proposed constitutive theory
and model, the attention is focuses on the eval-
uation of this predictive capabilities.

2 PHYSICAL MODEL
Figure (1) shows the scheme of a represen-

tative volume of porous media. It is composed
by the addition of two components: the solid
skeleton particle and the fluid particle, both co-
incident in time and space. The solid skeleton
is constituted by the solid matrix, the occluded
porosity and the connected porosity. The fluid
particle is composed of the fluids located in the
connected porosity: water and air, according to
the saturation condition [10].

Figure 1: Porous Medium Composition.

Figure 2: Dehydration Model.
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2.1 DEHYDRATION MODEL
The calcium silicate hydrates (CSH) forma-

tion is the main responsible of the concrete me-
chanical strength development at early age [11],
i.e. when the cement paste hydration process
develops. Contrarely, in hardened concrete sub-
jected to the action of high temperature, CSH
undergoes a dehydratation process which leads
to the loss of material strength. Addressing
the study of the concrete behavior as a porous
medium, it is possible to consider the existence
of bound water, chemically attached to the solid
matrix and responsible for the integrity of the
CSH. With increasing temperature the bound
water becomes free, in this condition it leaves
the solid skeleton and moves to the connected
porosity, as shown in Fig.(2). This process is
the main reason for the CSH dehydration and
the degradation of concrete strength.

3 POROUS MEDIA THERMODYNAM-
ICS

The first Thermodynamics law expresses the
energy conservation, i.e. it defines the temporal
balance between the internal energy, the kinetic
energy, the mechanical work of external forces
and the supplied heat

Ė + K̇ = Pext +Q0; E =

∫
Ω

edΩ (1)

The second Thermodynamics law states that
the system energy can only irreversibly de-
crease

Ṡ −Qθ ≥ 0; S =

∫
Ω

sdΩ (2)

In the above equations, Pext is the mechani-
cal work done by external forces, Q0 is the
heat, E the system internal energy, S the sys-
tem entropy, e the internal energy density, K
the kinetic energy, Ω the volume, ∂Ω the surface
boundary, Qθ = Q0/θ the heat work per unit of
absolute temperature θ, and s the entropy den-
sity.

The Clausius-Duhem inequality for open
porous media takes the form, see Coussy, O.
[12]

∫
Ω

[
σ : ε̇− gβm∇ ·wβ − sθ̇ − ψ̇+

−wβ ·
(
∇gβm + sβm∇θ

)
−h

θ
· ∇θ

]
dΩ ≥ 0 (3)

where β ∈ [1 : n] and n is the number of fluid
components. Furthermore σ represents the sec-
ond order Cauchy tensor, ε the second order ab-
solute strain tensor, ψ the free Helmholtz en-
ergy, sm the internal entropy per unit mass, w a
first order tensor corresponding to the fluid flux,
gm the enthalpy per unit flux mass and h a first
order tensor corresponding to the heat flux. In
the above equations, (˙) denotes the time deriva-
tive, and the bold letters represent tensors.

3.1 Chemo-mechanics of a closed porous
medium

In this paper closed porous media are con-
sidered, i.e. there is no fluid exchange between
the outside and the system. This implies that the
fluid mass flow is null (wβ = 0), therefore, the
inequality given by Eq.(3) takes the form

∫
Ω

[
σ : ε̇− sθ̇ − ψ̇ − h

θ
· ∇θ

]
dΩ ≥ 0 (4)

Remark. Non-local analysis is based on the
gradient plasticity theory, following the ap-
proach proposed by Svedberg, T. and Runesson,
K., Vrech, S. M. and Etse, G. and Mroginski,
J. et. al. [7–9], where the non-locality is lim-
ited to the internal state variables, adopted as
scalar values. This proposal simplifies the study
of non-local problem, respect to the approaches
submitted by Gao, H. et. al., Fleck, N. A. and
Hutchinson, J. W. and Gudmunson, P. [13–15].

ψ(εe, θ, ξ, κ,∇κ) = ψe(εe, θ, ξ)+

+ψch(ξ) + ψp,loc(ξ, κ) + ψp,nl(∇κ) (5)
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Where ψe, ψch, ψp,loc and ψp,nl represent the
elastic, chemical, local plastic and gradient non-
local contributions to the total free energy, re-
spectively. Moreover, εe is the elastic compo-
nent of the strain tensor, κ is a plastic internal
state variable and ξ is the dehydratation grade
of the cement paste. From Eq.(5) follows the
state equations

σ =
∂ψe

∂εe
; S = −∂ψ

e

∂θ
(6)

with the chemical, thermal and local plastic dis-
sipations, Dch, Dth and Dp,loc, respectively

Dch = −∂ψ
ch

∂ξ
ξ̇ ≥ 0;

Dth = −h

θ
· ∇θ ≥ 0;

Dp,loc = σ : ε̇p − ∂ψp,loc

∂κ
κ̇ ≥ 0 (7)

and the non-local plastic dissipation

Dp,nl =

(
∇ · ∂ψ

p,nl

∂∇κ

)
κ̇+

+

∫
∂Ω

n · ∂ψ
p,nl

∂∇κ
κ̇d∂Ω ≥ 0 (8)

being εp the plastic component of the strain ten-
sor and n the normal vector to the boundary
∂Ω. In a thermodynamically consistent chemo-
gradient poroplastic system exists a convex set
of admissible stress states fulfilling the follow-
ing condition

{(σ, K, ξ) | F (σ, K, ξ) ≤ 0} →
F (σ, K, ξ) = f(σ)−K(λ, ξ) = 0 (9)

where K is the dissipative stress defined in
terms of internal state variables and the dehy-
dration degree, and λ a plastic multiplier. Fur-
thermore, a dissipative potential can be defined
as

Q(σ, K, ξ) = g(σ)−K(λ, ξ) = 0 (10)

that fulfills the flow rule

ε̇p =
∂Q

∂σ
= mλ̇; κ̇ =

∂Q

∂K
λ̇ (11)

and the Kuhn-Tucker conditions

λ̇ ≥ 0, F (σ, K, ξ) ≤ 0,

λ̇F (σ, K, ξ) = 0 (12)

with m the plastic potential gradient

3.2 Constitutive Equations
In a closed porous medium, chemically reac-

tive, each term of the free energy in Eq.(5) can
be defined as follows

ψe =
1

2
εe : C : εe+

− θα : C : εe +
l

θ0

ξθ − C

2θ0

θ2 (13)

ψch =
hch

2
ξ2 − A0ξ;

ψp,loc = −1

2
h(ξ)locκ2

ψp,nl =
1

2
l2cH

g∇.∇κ (14)

Thereby is C the concrete heat capacity, hloc

the softening/hardening chemo-plastic modu-
lus, A0 the initial chemical affinity, lc the
gradient characteristic length, Hg the soften-
ing/hardening gradient modulus, θ the tem-
perature, l the latent dehydratation heat, hch

the chemical modulus and α = αII, with
α the concrete thermal dilatation coefficient
and II the second order identity tensor. From
Eqs.(7) and (8), the dissipative stresses Kch =
−∂ψch/∂ξ,Kp,loc = −∂ψp,loc/∂qα andKp,nl =
∇·∂ψp,nl∂∇qα are obtained, while from Eq.(6)
the total and dissipative stresses

σ̇ = C : ε̇e + αI : Cθ̇;

Ṡ =
C

θ0

θ̇ +
l

θ0

ξ̇ (15)
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are derived. Finally, from Eqs.(13) and (14) fol-
lows

K̇p,loc = −h(ξ)locκ̇− ∂h(ξ)loc

∂ξ

κ2

2
ξ̇

K̇ch = −hchξ̇ +
l

θ0

θ̇ (16)

K̇p,nl = −lc∇ · (Hg∇κ̇) (17)

The coefficients in Eqs.(15), (16) and (17) are
achieved from the Helmholtz free energy, re-
sulting

C =
∂2ψe

∂εe∂εe
; αI : C =

∂2ψe

∂εe∂θ
;

C

θ0

=
∂2ψe

∂θ∂θ
;

l

θ0

=
∂2ψe

∂θ∂ξ
(18)

h(ξ)loc = −∂
2ψp,loc

∂κ∂κ
hch =

∂2ψch

∂ξ∂ξ
(19)

Hg =
1

l2c

∂2ψp,nl

∂∇κ∇κ
; (20)

4 THERMAL BALANCE AND KINET-
ICS OF DEHYDRATION

From Eqs.(2) and (15-b), and assuming the
Fourier law for the temperature distribution
(h = −k∇θ) the heat equation that determines
the temperature distribution in space and time is
achieved

Cθ̇ = k∇ · ∇θ + lξ̇ (21)

where k represents the concrete heat conduc-
tivity. Moreover, for determining the dehydra-
tion degree depending on the applied tempera-
ture, it is necessary to evaluate Eq.(16-b) when
Kch → 0. According to the experimental ev-
idence, each temperature level can be linearly
and uniquely related to the cement paste dehy-
dration level [1]. Therefore, the following func-
tion can be considered

ξ = γ(θ − 20) (22)

with θ in Celsius degrees and γ = 0.0015.

5 CONSTITUTIVE MODEL
To model and predict the response of con-

crete in the framework of a thermodynamically-
consistent gradient-elastoplastic theory, the
Temperature-Dependent Leon-Drucker-Prager
Criterion (TD-LDP) is proposed, that arises
from the reformulation of the Leon Drucker-
Prager (LDP) failure criterion [16]. The TD-
LDP failure surface is given in Eq.(23) and its
isotropic variation with different dehydration
levels is shown in Fig.(3).

F∗(ρ, p, ξ) =
3

2
ρ∗+m(

ρ∗√
6

+ p∗)− (1− ξ) = 0

(23)
where

p∗ =
p

f ′c
; ρ∗ =

ρ

f ′c

ρ =
√

2J2; p =
trσ

3
(24)

with p and ρ, the deviatoric and volumetric co-
ordinates in the Haigh Westergaard stress space,
and f ′c and f ′t the maximum compressive and
tensile strengths, respectively and J2 the sec-
ond invariant of deviatoric stresses, while the
friction parameter has the following expression

m =
3

2

f ′2c − f ′
2
t

f ′cf
′
t

(25)

Figure 3: TD-LDP Model Failure Surfaces.

Beyond the elastic regime, plastic strains
take place and the material exhibit hardening or
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softening. To capture these behaviors a yield
surface is proposed

F (ρ∗, p∗, Kh, Ks) =
3

2
(ρ∗)2+

+Khm(
ρ∗√

6
+ p∗)− (1− ξ)KhKs = 0 (26)

Furthermore, a potential surface is adopted
to reduce the excessive plastic volumetric
strains

Q(ρ∗, p∗, Kh, Ks) =
3

2
(ρ∗)2+

+Khm(
ρ∗√

6
+ ηp∗)− (1− ξ)KhKs = 0

(27)

with η the non-associative variable, Kh and Ks

defined as follows

Kh = 0.1 + 0.9sin

[
π

2

‖m‖λ
xp(p∗, ξ)

]
(28)

Ks = Kf
s (κ, ξ) +Kg

s (∇κ)

Ks = exp

[
−5

ht(ξ)

RG(p∗)

‖〈m〉‖λ
ur

]
+

− l2cHg∇2κ (29)

In the above equations, xp(p∗, ξ) represents the
plastic strain corresponding to the peak load. It
can be interpreted as a hardening ductility mea-
sure, depending on the pressure confinement
and the dehydration degree. In Eq.(29) Kf

s rep-
resents the stiffness degradation due to macro or
micro-cracking processes, Kg

s is the decohesion
of the solid between cracks and ur denotes the
maximum crack opening, while ht(ξ) the total
continuum height depending on the dehydration
degree. The Mc. Cauley brackets are defined as
〈x〉 = 0.5(x + |x|). RG is the radio between
GII
f and GI

f and it remains constant with tem-
perature variations. The gradient contribution
to the material stifness and softening is defined

by Ks which is a function of the cahracteristic
length lc. The last one is defined in terms of the
acting confinement pressure. The functions of
xp, ht(ξ) and RG are expressed as

xp(p
∗, ξ) = Ahexp [Bhp

∗ + Chξ] (30)

ht(ξ) = ht
(
Asξ

2 −Bsξ + Cs
)

(31)

RG(p∗) =


1 p∗ ≥ 0,
Cu +Dusin

(
2p∗ − π

2

)
−1.5 ≥ p∗ ≤ 0,

100 p∗ ≤ −1.5.

(32)

where Ah, Bh, Ch, As, Bs are constants to be
calibrated from experimental results, Cs = 1.00
and ht is the total continuum height at room
temperature . The variation of RG in terms of
p∗ and ht(ξ) in terms of ξ are shown in Figs.(4)
and (5), respectively.

Figure 4: Variation of RG in terms of the confinement
pressure [8]

Figure 5: Variation of RG in terms of the dehydration
degree
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6 THERMODYNAMICAL CONSIS-
TENCY OF THE TD-LPD MODEL

The plastic energies in hardening and soft-
ening regimes of the proposed model can be ex-
pressed as

ψph(κ, ξ) = −0.1κ− 0.9

κ
cos(−αhκ) (33)

ψps(κ, ξ,∇κ) = − 1

αs
exp(αsκ)+

+
1

2
l2cH

g∇ · ∇κ (34)

respectively, where

αh =
π

2

‖m‖λ
xp(1− ξ)

(35)

αs =
5ht

urRG(p∗)

‖〈m〉‖λ
(1− ξ)

(36)

Taking into account Eqs.(7-c) and (8) and the
above expressions for the plastic energies, then
Eqs.(28) and (29) for the dissipative stresses
Kh and Ks can be obtained and the fulfillment
of the thermodynamical consistency is demon-
strated.

7 RESULTS

In this section, the numerical predictions of
the model for the uniaxial compression test
considering uniform temperature profile is pre-
sented. The numerical implementation consid-
ers a mixed constant strain triangular FE for
gradient plasticity [17] under axialsymmetric
conditions. A quarter of the real specimen
(7.5cm x 15cm), was analyzed due to the dou-
ble symmetry conditions, using a uniform mesh
of 384 elements, see Fig.(6).

(a) (b)

Figure 6: (a) Boundary conditions; (b) FE discretization.

For the stiffness degradation a linear re-
lationship was considered in the form E =
E0(1 − ξ), see Ulm, F. J. and Coussy, O. [1],
being E0 the elasticity modulus of the non-
degraded concrete. The considered materials
properties are shown in Table (1) while the
model parameters are summarized in Table (2).

Table 1: Concrete Properties

Elasticity Modulus - E0 19300 MPa
Poisson Modulus - υ 0.20 -

Compressive Strength - f ′c 22.00 MPa
Tensile Strength - f ′t 2.20 MPa

Maximum Crack Opening - ur 0.127 mm
Sep. between Tens. Cracks - ht 108.00 mm

Internal Length - lc 30.00 mm
Gradient Modulus - Hg 1.00 MPa

Table 2: Model Parameters

Ah 0.0007
Bh -0.0089
Ch 4.50

RG(p
∗) 4.60

As 3.20
Bs 3.20
Cs 1.00

Figure (7) despicts the predicted total plastic
strain profile for the inhomogeneous compres-
sion test when the concrete probe is subjected
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to 300◦C, whereas Fig.(8) illustrates the same
results when the applied temperature is 500◦C.

The results of the stress-strain curves in com-
pression tests for different dehydration levels
are shown in Fig.(9) and compared with the
experimental stress-strain curve at environment
temperature proposed by Hurbult, B. [18] for
the same concrete. It could be clearly ob-
served the decrease of the stiffness and the
peak strength with increasing temperature due
to increase of the dehydration degree. Further-
more, an increase in the fracture energy can
be evidenced, this trend continues until around
400◦C, starting to decrease from that tempera-
ture. These results are in agreement with ex-
perimental data carried out by Lee et. al. [19]
shown in Fig.(10).

Figure 7: Plastic strain distribution in Uniaxial Compres-
sion test with inhomogeneous vinculation after 300◦C ex-
posure.

Figure 8: Plastic strain distribution in Uniaxial Compres-
sion test with inhomogeneous vinculation after 500◦C ex-
posure.

Figure 9: Uniaxial Compression test of normal concrete
(22.50MPa) after high temperatures.

Figure 10: Experimental Uniaxial Compression tests on
Normal Concrete (27.60MPa) after High Temperature ex-
posures.

7.1 Future Developments
Presently, the authors are working in the cal-

ibration of the gradient characteristic length in
terms of the dehydration degree.

8 CONCLUSIONS
In this work a thermodynamically consistent

gradient poroplastic model for concrete sub-
jected to high temperature is proposed. The
model takes into account the thermo-chemo-
mechanical coupling in porous materials like
concrete when they are considered as non-local
closed porous media. The controlling parameter
is the dehydratation of cement paste when sub-
jected to high temperature exposure. A particu-
lar form of gradient poroplasticity is considered
whereby the state variables are the only ones of
non-local characters. The post-peak behavior is
defined by a combined mechanism of fracture
energy release-based softening process in the
active micro-cracks, and a gradient-based soft-
ening in the solid material in between cracks.

8
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Thereby, the gradient characteristic length is de-
fined in terms of the acting confining pressure
while the fracture energy characteristic length
is defined in terms of both the confining pres-
sure and the dehydration degree. The proposed
model is able to realistically and objectively
predict the temperature dependent failure be-
havior of concrete. Particularly, the model is
capable to reproduce the variation of strength,
stiffness and post-peak ductility in terms of the
acting temperature.
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