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Abstract. A global/local method, or sub-modelling method, has been developed to obtain a fine
description of cracking in concrete specimen. A discrete-element model is used to re-analyse at a
local scale the damage zone obtained after the finite-element analysis of the global specimen. This
strategy is applied to study the influence of size effect on cracking of plain concrete. The numerical
results are compared to available experimental results obtained with the Digital Image Correlation
method.

1 INTRODUCTION

Nowadays, experimental campaigns on large
concrete structures are very rare because their
cost is still prohibitive. Therefore, numerical
models are mostly validated and calibrated ac-
cording to results provided by small laboratory
tests. The extrapolation of the laboratory results
to large structures should follow the size effect
theory. The influence of size effect on strength
has been investigated for several years [1]. Re-
cent experimental studies [2] have also put in
evidence the influence of size effect on crack
features propagation, length and opening. A
global/local analysis [3] is used to study the size
effect. Indeed, this computational strategy aims
at quantifying cracking at the structural scale.
First, a continuous damage model is used to per-
form a full calculation at the global scale. This
damage model which takes into account dam-
age coupled to permanent strain and hystere-
sis is able to produce some information about

the non-linear behaviour (load redistribution,
stiffness decrease, dissipated energy) but not
about the cracking. Information about crack-
ing (tortuosity, heterogeneities and openings) is
extracted by using a reanalysis of the damaged
zones at the local scale with a discrete element
model [4]. The global/local technique proposed
is non-intrusive and decoupled so the reanaly-
sis can be seen as a post-treatment. Plus, the
two-scale analysis uses each numerical model
within its more efficient level. This presenta-
tion aims at comparing the numerical results ob-
tained from the proposed strategy with experi-
mental results from three-points bending tests
exhibiting size effect. The relevancy of the two
scale approach is emphasized thanks to exper-
imental field measurements around the crack
path. The parameters identification strategies of
the two levels of modelling based on an equiv-
alent energy dissipation rate will be also ad-
dressed.
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2 THE GLOBAL MODEL
The model used at the global scale is a finite-

element model coupling elasticity, isotropic
damage and internal sliding (see [5]). The state
potential is given by the Helmholtz free energy:
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κ
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where ρ is the material density, Ψ the Helmholtz
free energy, d the scalar damage variable rang-
ing from 0 (virgin material) to 1 (failed mate-
rial), εij the total strains second-order tensor, επij
the internal sliding second-order tensor, αij the
kinematic hardening second-order tensor, z the
scalar isotropic hardening variable, H the con-
solidation function, κ the bulk coefficient, µ the
shear modulus and γ the kinematic hardening
parameter that has to be identified from mea-
surements. < . >+ and < . >− stand for the
positive part and the negative part of (.) respec-
tively. (.)d is the deviatoric part of (.) defined as
(.)d = (.)− 1

3
(.)kk.

This model can describe the local mecha-
nisms related to concrete such as the asymme-
try between the tensile behaviour and the com-
pressive behaviour, the inelastic strains and the
unilateral effect. Moreover, it is robust and can
handle large-scale computation.

However, this model requires the introduc-
tion of a characteristic length to prevent the oc-
currence of spurious mesh dependency related
to strain softening. Here, the regularization of
the problem is ensured by means of the well-
known non-local technique [8]. The energy re-
lease rate is averaged in Ω(x, lc), where x and
lc respectively stand for the current Gauss point
and the characteristic length and is therefore ex-
pressed as:

Ỹ (x) =

∫
Ω(x,lc)

Ȳ (s)Λ(x− s))ds∫
Ω(x,lc)

Λ(x− s))ds
(2)

where Λ is the Gaussian distribution. This regu-
larization tends to smooth the discontinuity and
thus makes the study of the cracks complex.

3 THE LOCAL MODEL
The local model is a discrete-element model

based on a particle assembly, computed from
a Voronoi tesselation. Neighbour particles
are linked together by elastic Euler-Bernoulli
beams representing cohesion forces (lattice
model). The non-linear behaviour of the ma-
terial is obtained by considering that the beams
obey a brittle behaviour.
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Figure 1: Euler-Bernoulli beam in a deformed state.

The breaking threshold Pij of the beam i− j
depends on the beam strain εij and on the rota-
tions of the particles linked by the beam θi and
θj (see figure 1). It is written as:

Pij =

(
εij
εcrij

)2

+
|θi − θi|
θcrij

> 1 (3)

The critical strain εcrij and the critical rota-
tion θcrij of the beam i − j are assigned to the
beam i−j using a random number generator ac-
cording to the Weibull distribution, as proposed
by [6].

This model gives complete information
about the macro-cracking (initiation, propaga-
tion, opening, length) and the micro-cracking.
Unfortunately, large-scale computation are im-
practical because the time needed to complete
them is prohibitive.

More details about this model can be found
in [4].

4 THE NUMERICAL STRATEGY
The method used here is inspired by the

sub-modelling techniques [7]. This is a non-
intrusive method which only uses available in-
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put and output (nodal displacements). It is com-
posed of the following steps:

• Global analysis of the whole structure
with a non-linear finite element model in-
cluding damage;
• Identification and cutting of the ROI

(Region of Interest), which is the region
of damage concentration;
• Extraction and interpolation of the dis-

placements from the global mesh to the
local mesh;
• Local analysis of the ROI with a discrete

element model.

The local forces are not used to perform a cor-
rection of the global computation with the local
results. Indeed, the local re-analysis is a post-
processing tool which gives complementary in-
formation on the kinematic of the cracks.

5 APPLICATION
The global/local analysis presented above

has been applied to size effect tests on three-
points bending concrete beams.

5.1 Experimental study
The beams used in [2] have a rectangular

cross section of height d and thickness b.

Figure 2: Geometry of the beams [2].

The span of the beam is l = 3d. The
beams are notched at midspan with a length of
a = 0.2d. The geometry of the beams is given

on figure 2. Three sizes of geometrically simi-
lar beams are studied: D1 (d = 100mm), D2
(d = 200mm) and D3 (d = 400mm). The
thickness is constant at b = 100mm for all the
sizes. At least three beams have been tested for
each size.

The Digital Image Correlation (DIC) tech-
nique was used to obtain experimental infor-
mation on the cracking. Indeed, the fine de-
scription of the experimental displacement field
throught DIC allows the extraction of the crack
geometry, tip and opening. Moreover, the com-
putation of the experimental strain field gives
the strain localization zone corresponding to the
micro-cracking area.

The material parameters are summarized in
table 1.

Table 1: Material parameters

Young’s modulus GPa E 38
Poisson’s coefficient - ν 0.21

Tensile strength MPa ft 3.5

5.2 Numerical study
5.2.1 Meshes and loading conditions

The global mesh used for the analysis of the
D1 beam is presented on top of figure 3. The
ROI, centered on the damage zone, is delimited
by a red square.

Figure 3: Global mesh

The local mesh of the ROI for the D1 spec-
imen is presented on bottom of figure 4. Dis-
placements extracted of the global computation
are applied on the black boundaries of the lo-
cal mesh while the red boundaries are kept free.
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The global and the local mesh densities are con-
stant for each size of the beam.

Figure 4: Local mesh

5.2.2 Models parameters identification

The calibration of the nonlocal global model
follows the procedure proposed by Le Bellégo
[9]. The calibration relies on inverse analysis
and an optimisation algorithm. The complete
load deflection curves for each size of beam are
used in order to capture correctly the size ef-
fect. The global model parameters identified
with this method are given on table 2.

Table 2: Material parameters for the global model

Tensile brittleness J−1.m3 ADir 4.6 10−3

Comp. brittleness J−1.m3 AInd 3.5 10−4

Kinematic hardening 1 Pa γ 2.0 107

Kinematic hardening 2 Pa−1 a 7.0 10−7

Characteristic length mm lc 20

The local model parameters are calibrated
according to the methods presented in [4] and
[3]. Because the lattice models are naturally
able to capture the size effect, no additional fea-
ture has been added to these methods. The local
parameters are summarized in table 3.

Table 3: Material parameters for the local model beams

Young’s modulus GPa E 40

Inertia ratio - α 0.83
Rotation threshold - θcr 5 10−3

Scale parameter - λεcr 3.25 10−4

Shape parameter - kεcr 0.6
Min. strain threshold - εcr,min 1.1 10−4

5.2.3 Numerical results

The effect of the beam size on the load-
CMOD (Crack Mouth Opening Displacement)
response is presented on figure 5. The numeri-
cal results obtained with the global model are in
agreement with the experimental results.
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Figure 5: Load-CMOD curves (D1: black, D2: red and
D3: orange)

Figure 6 shows a comparison between the
measured and calculated size effect for concrete
beams. In addition, the results of the size ef-
fect law by Bazant [1] are printed. According
to this size effect law, the nominal strength is
expressed as:

σn =
Bft√

1− (D/D0)
(4)

where ft is the tensile strength, B a dimension-
less parameter depending of the structure geom-
etry, D the beam height and D0 the transitional
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size. The experimental and numerical beam
nominal strength shows strong size dependence
and match well the size effect law.

0 10 20 30
0

0.2

0.4

0.6

0.8

1

D/D0

σ
m
a
x
/B

f t

Law
Exp.
Num.

Figure 6: Normalized diagram of the size effect results

The comparison of the amount of dissipated
energy inside the ROI during the global compu-
tation and the local computation gives us an ap-
preciation of the agreement between the global
analysis and the local re-analysis (see figure 7).
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Figure 7: Comparison of the global and the local dissi-
pated energy-deflection responses (D1: black, D2: red
and D3: orange)

Finally, the results in term of cracking ex-
tracted from the local re-analysis are compared
to the experimental results on figure 8 and 9. A
gap is observed between the experimental crack

features (length and opening) and the numerical
ones but is in accordance with the experimental
variation of ±5µm.
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Figure 8: Crack opening profile at peak (D1: black, D2:
red and D3: orange)
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Figure 9: Crack opening profile at 60% post-peak (D1:
black, D2: red and D3: orange)

It has been observed, both experimentally
and numerically, that crack lengths and crack
openings increase non-proportionally to the
size. It does not follow Bazant’s size effect law
either.

6 CONCLUSIONS
A numerical strategy to obtain a fine de-

scription of cracking in plain concrete specimen
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has been applied to size effect tests on three-
points bending tests. Assuming a reliable de-
scription of the material non-linear behaviour at
the global scale using a damage finite-element
model, a re-analysis of the damage zone with
a discrete-element model is performed. The
global and the local results are both compared
to the available experimental results and show a
good agreement. The impact of the size effect
on the cracking features is studied. Only the
crack opening and the crack length have been
studied here but some results about the micro-
cracking area will be presented during the lec-
ture. The experimental information about the
micro-cracking area will be extracted from the
DIC results as proposed by Skarzynski [10].
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