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Abstract. This paper presents a constitutive equation for the postpeak stress–displacement relation-
ship of concrete in uniaxial compression. The relationship is modelled in relation to the process
of postpeak energy dissipation increasing the postpeak displacement of the localized damage zone.
The proposed equation includes three material parameters: compressive fracture energy, compres-
sive strength, and critical postpeak displacement. The nondimensional form of the equation shows
that a parameter determined from these three material parameters controls the shape of the postpeak
stress–displacement curve. The predictions produced by the proposed equation are fit to uniaxial
compression test results from concrete specimens with different slenderness ratios and strengths. The
fitting results and experimental responses agree quite well.

1 INTRODUCTION
It is generally accepted that during the strain

softening behaviour of concrete in its postpeak
region under uniaxial compression, the dam-
age is localized in certain zones and strain lo-
calization occurs [1]. Due to the localization
phenomena, the postpeak portion of the stress–
strain relationship is not a true material prop-
erty, but is dependent on specimen size, with
longer specimens exhibiting more brittle post-
peak behaviour. Development of an appropri-
ate postpeak relationship based on strain local-
ization is important in accurately estimating the
ductile capacity of concrete structures.

Published tests [1–3] have shown that the
postpeak displacement of the localized damage
zone is independent of specimen size. Some
theoretical approaches have been proposed for
analyzing the compressive behaviour of con-
crete based on this physical evidence. They in-

corporate a stress–strain relationship to describe
the prepeak response and a stress–displacement
relationship to describe postpeak behaviour as
a material property [4–6]. These approaches
can adequately predict concrete specimens’ uni-
axial compression test results, but the post-
peak stress–displacement relationship is ap-
proximated by an overly simple equation. A
more realistic equation for the postpeak stress–
displacement relationship may be needed to fur-
ther improve predictions.

The purpose of this paper is to develop a
postpeak stress–displacement relationship for
concrete in uniaxial compression. We propose
a method to derive a realistic description based
on the correlation between the postpeak stress–
displacement relationship and the postpeak dis-
sipated energy–displacement relationship. We
present the nondimensional form of the pro-
posed equation describing the postpeak stress–
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Figure 1: Correlation between (a) σ – ε relationship, (b) σ – δp relationship and (c) G – δp relationship.

displacement relationship to show how the pa-
rameters influence the shape of the relationship.
We use least squares fitting to uniaxial compres-
sion test results from concrete specimens with
different slenderness ratios and strengths to es-
timate the material parameters used in the pro-
posed equation, then compare the fitted results
and experimental responses.

2 POSTPEAK STRESS–DISPLACEMENT
RELATIONSHIP

2.1 Derivation of fundamental expression
We adopted the approach for the localized

compression model proposed by Hillerborg
[4] to model the postpeak stress–displacement
relationship of concrete. Consider a one-
dimensional concrete specimen under uniaxial
compression. The specimen has a height of
H , and a uniform cross-sectional area along the
height. A typical stress–strain (σ – ε) relation-
ship for a concrete specimen in compression as
observed experimentally is illustrated in Figure
1(a). The relationship of the prepeak region
up to the compressive strength f ′

c can be con-
sidered to be approximately the same through-
out the specimen. At the compressive strength,
strain localization takes place, and strain soft-
ening begins in a localized damage zone.

In the postpeak region, the compressive be-
haviour of the whole specimen can be described
as a combination of the behaviour inside and
outside the damage zone. The postpeak dis-
placement δp in the localized damage zone con-
tinues to increase, while the remainder of the

specimen unloads. Assuming that a linear un-
loading path from the compressive strength f ′

c

with slope Eo during unloading occurs outside
the damage zone, the postpeak displacement δp
shown in Figure 1(a) can be given by

δp =

(
ε− εo +

f ′
c − σ

Eo

)
H (1)

where ε and σ are the strain and stress, and εo
is the strain corresponding to the compressive
strength f ′

c.
The progress of the postpeak displacement

in the localized damage zone is accompanied
by energy dissipation. The area under the curve
of the postpeak stress–displacement (σ–δp) re-
lationship shown in Figure 1(b) corresponds to
the amount of postpeak energy dissipated per
unit specimen area [2, 7]. In this investigation,
we assume that stress is a function of the post-
peak displacement, i.e. σ = σ(δp) as shown in
Figure 1(b), and the postpeak energy dissipated
G is defined as

G =

∫ δp

0

σdδp (2)

where δp and σ are the postpeak displacement
and stress at a given point on the curve of the re-
lationship in Figure 1(b), respectively. The total
postpeak energy dissipated by the time the post-
peak displacement reaches the critical value δpu,
corresponding to the stress condition σ = 0, can
be defined as the compressive fracture energy
GFc.

According to Equation (2), the postpeak dis-
sipated energy is also assumed to be a function
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of the postpeak displacement, i.e. G = G(δp),
which satisfies the following equation.

σ =
dG

dδp
(3)

Equation (3) implies that the postpeak stress–
displacement relationship can be defined by
determining the postpeak dissipated energy–
displacement (G – δp) relationship with an ap-
propriate equation and then differentiating that
equation with respect to the postpeak displace-
ment.

The essential features of the postpeak dissi-
pated energy–displacement relationship shown
in Figure 1(c) are the following:

1. The postpeak dissipated energy is an in-
creasing function of the postpeak dis-
placement, starting from G = 0 at δp = 0
and increasing up to G = GFc at δp =
δpu.

2. The slope of the postpeak dissipated
energy–displacement curve corresponds
to the stress σ = f ′

c at δp = 0 and σ = 0
at δp = δpu.

Taking these features into account, the postpeak
dissipated energy–displacement relationship is
assumed to be defined by the following pro-
posed equation.

G =
a1δp + a2δ

2
p

1 + a3δp + a4δ2p
(4)

where a1, a2, a3 and a4 are constants deter-
mined from the boundary conditions of the re-
lationship. Considering an additional bound-
ary condition, the horizontal tangent at the point
of compressive strength on the postpeak stress–
displacement curve, d2G/dδ2p = dσ/dδp = 0 at
δp = 0, together with the previously described
boundary conditions of G = 0 and σ = f ′

c at
δp = 0, G = GFc and σ = 0 at δp = δpu, the
constants are given by

a1 = f ′
c

a2 = f ′
c

(
f ′
c

GFc

− 2

δpu

)

a3 =
f ′
c

GFc

− 2

δpu

a4 =

(
f ′
c

GFc

− 1

δpu

)2

(5)

Thus, using Equations (3) to (5), the following
expression can be derived.

σ=
f ′
c

{
1+2

(
f ′
c

GFc
− 2

δpu

)
δp−

(
2f ′

c

GFcδpu
− 3

δ2pu

)
δ2p

}
{
1+

(
f ′
c

GFc
− 2

δpu

)
δp+

(
f ′
c

GFc
− 1

δpu

)2

δ2p

}2

(6)

As Equation (6) clearly shows, the shape of the
postpeak stress–displacement curve in practical
application depends on three material param-
eters: compressive fracture energy GFc, com-
pressive strength f ′

c, and critical postpeak dis-
placement δpu.

2.2 Nondimensional form expression
To demonstrate the shape of the postpeak

stress–displacement relationship obtained using
Equation (6), we introduce the following new
parameter Ap, determined using those three ma-
terial parameters.

Ap =
GFc

f ′
cδpu

(7)

As can be seen from Figure 1(b) and Equation
(7), the parameter Ap represents the ratio be-
tween the area under the curve of the postpeak
stress–displacement relationship and the area of
a rectangle given by f ′

c times δpu. Considering
softening behaviour, the parameter Ap must be
a positive value less than 1.

Using the parameter Ap, Equation (6) can
be rewritten in the following nondimensional
form.

σ

f ′
c

=
1+2

(
1
Ap

−2
)

δp
δpu

−
(

2
Ap

−3
)(

δp
δpu

)2

{
1+

(
1
Ap

−2
)

δp
δpu

+
(

1
Ap

−1
)2(

δp
δpu

)2
}2 (8)
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In this expression, stress and postpeak displace-
ment are reduced to nondimensional forms by
dividing them by compressive strength f ′

c and
critical postpeak displacement δpu, respectively.
The parameter Ap thus becomes a single pa-
rameter that determines the relationship. Figure
2 shows the nondimensional form of the post-
peak stress–displacement relationship with var-
ious values of Ap. The value of Ap influences
the shape of the relationship, with larger val-
ues exhibiting more ductile postpeak behaviour.
Based on Figure 2, it seems appropriate for pa-
rameter Ap to be less than 0.5 for realistic rep-
resentation of the behaviour of plain concrete.

Another possible expression of the nondi-
mensional form of Equation (6) that makes use
of parameter Ap is given by

σ

f ′
c

=
1+2 (1−2Ap)

f ′
cδp

GFc
−(2−3Ap)Ap

(
f ′
cδp

GFc

)2

{
1+ (1−2Ap)

f ′
cδp

GFc
+(1−Ap)

2
(
f ′
cδp

GFc

)2
}2

(9)

In this expression, GFc/f
′
c is used to reduce

the postpeak displacement to a nondimensional
form.

As a special case, if Ap = 0 is used and the
value of the critical postpeak displacement δpu
is assumed to be infinity, Equation (9) can be
rewritten in the following simple form

σ

f ′
c

=
1 + 2 f ′

cδp
GFc{

1 + f ′
cδp

GFc
+
(

f ′
cδp

GFc

)2
}2 (10)

If Ap = 1 is used, Equation (9) (or (8)) becomes

σ

f ′
c

= 1 (11)

These two special cases are illustrated in Figure
3.

3 FITTING TO EXPERIMENTAL RE-
SULTS

In the postpeak stress–displacement relation-
ship proposed in the previous section there are

relative postpeak displacement
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Figure 2: Nondimensional form of postpeak stress–
displacement relationship with various parameters Ap.
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Figure 3: Postpeak stress–displacement relationship with
parameters Ap = 0 and 1.

three material parameters, GFc, f ′
c and δpu (or

Ap), that need to be determined for practical ap-
plications. While the compressive strength f ′

c

is easy to determine experimentally, the com-
pressive fracture energy GFc and critical post-
peak displacement δpu are hard to measure us-
ing uniaxial compression tests because the tests
generally cannot continue to the point where
the stress drops to zero. However by fitting
the proposed relationship to experimental data
obtained through the point where the stress
drops to a certain postpeak level, these mate-
rial parameters can be estimated. In this in-
vestigation, we conducted uniaxial compression
tests on concrete specimens, and then fitted the
postpeak stress–displacement relationship us-
ing least squares to estimate the material param-
eters of each concrete specimen.
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Figure 4: Concrete specimens with different heights.

3.1 Uniaxial compression test
In the uniaxial compression test, specimens

with different slenderness ratios and strengths
were tested. As shown in Figure 4 and Table 1,
we used two sets of cylindrical specimens with
the same diameters D = 100 mm and heights
H = 200 mm and 400 mm, prepared with two
concrete mixes. To prevent the effect of bleed-
ing in concrete, the specimens were cast 200
mm taller than their proper heights, and 100
mm was cut from the top and bottom of each
specimen. At the time of loading, friction re-
ducing pads consisting of two 0.05 mm thick
Teflon sheets with silicon grease were placed
between the specimen and the loading platens.
The uniaxial compression test results showing
compressive strength f ′

c, strain at compressive
strength εo and the modulus of elasticity Ec are
given in Table 2. The compressive strengths
were about 25 N/mm2 and 50 N/mm2 for the
Mix I and II concretes, respectively.

3.2 Fitting result
The postpeak stress–displacement relation-

ship was fitted to the experimental results us-
ing Equation (9). The postpeak displacement
δp of the test results was calculated by Equa-
tion (1), assuming that the slope Eo is equal to
the modulus of elasticity Ec. The compressive
fracture energy GFc was assumed to be the co-
efficient estimated from the least squares fitting
procedure. By setting parameter Ap to various
values less than 0.5, corresponding values of
compressive fracture energy GFc were obtained

Table 1: Mix proportions

Mix W/C s/a Unit weight (kg/m3) Ad
(%) (%) W C S G (C×%)

I 56.2 44.5 179 318 784 998 0.006∗

II 32.0 47.2 175 547 747 853
0.006∗

1.1∗∗

* air entraining agent
** air entraining and high-range water reducing agent

Table 2: Specimens and test results

Mix H/D H f ′
c εo Ec

(mm) (N/mm2) (×10−6) (kN/mm2)
I 2 200 25.5 1874 24.3
I 4 400 25.3 1805 22.5
II 2 200 51.2 2875 26.4
II 4 400 49.8 2607 25.2
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(a) Compressive fracture energy GFc
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(b) Critical postpeak displacement δpu

Figure 5: Fitting results for various parameters Ap.
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Figure 6: Experimental and proposed σ – δp relationships
(using Ap = 0.1).
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Figure 7: Experimental and proposed G – δp relation-
ships (using Ap = 0.1).

for all the specimens as shown in Figure 5(a).
Also, the values of critical postpeak displace-
ment δpu calculated using Equation (7) are
shown in Figure 5(b). As can be readily seen
from Figure 5, for all specimens, the variation
of estimated values of GFc or δpu compared
to the values of Ap show the same tendency
although each specimen’s values are different.
Since the values of GFc decrease only slightly
as the values of Ap increase, they can be thought
to be generally consistent in this range of Ap.
On the contrary, the corresponding values of
δpu are significantly affected by the values of
Ap. We could not measure the actual values of
δpu in this test, but according to the fitting re-
sults, we assumed them to be at least greater
than 1 mm. As an example, we present a com-
parison between the resulting postpeak stress–

displacement relationships using Ap = 0.1 and
the experimental results in Figure 6. Over-
all, the proposed relationship is quite consistent
with the the experimental results.

Another set of comparisons of the fitting re-
sults using Ap = 0.1 against the experimental
results are shown in Figures 7 and 8 for the post-
peak dissipated energy–displacement relation-
ship and the stress–strain relationship, respec-
tively. The postpeak dissipated energy G of the
test results was obtained from the area under the
curve of the postpeak stress–displacement rela-
tionship calculated by the trapezoidal rule. The
strain ε of the postpeak region based on the pro-
posed relationship was calculated using Equa-
tion (1). For the prepeak region, we used the
following equation [8] with the parameter val-
ues listed in Table 2.
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Figure 8: Experimental and proposed σ–ε relationships
(using Ap = 0.1).

σ

f ′
c

=

Ecεo
f ′
c

ε
εo
−
(

ε
εo

)2

1 +
(

Ecεo
f ′
c

− 2
)

ε
εo

(12)

The results of these figures, including Figure 6
indicate that the proposed approach for mod-
elling the postpeak behaviour of concrete based
on the correlation of these relationships is valid.

4 CONCLUSIONS
We have presented a constitutive equation

for the postpeak stress–displacement relation-
ship of concrete in uniaxial compression. The
derivation of the equation is based on the cor-
relation between this relationship and the post-
peak dissipated energy–displacement relation-
ship. The proposed equation includes three ma-
terial parameters: compressive fracture energy,

compressive strength, and critical postpeak dis-
placement at the point when the stress drops to
zero. The nondimensional form of the equa-
tion shows that the parameter Ap, determined
from those three material parameters, controls
the shape of the postpeak stress–displacement
curve. For realistic representation of postpeak
behaviour in plain concrete, values of parame-
ter Ap that are less than 0.5 seem appropriate.

The results of least squares fitting of the
equation to uniaxial compression tests of con-
crete specimens with different slenderness ra-
tios and strengths show that the value of pa-
rameter Ap has more effect on the estimated
value of the critical postpeak displacement than
does the compressive fracture energy. For any
specimen, the fitted results using Ap = 0.1
and the experimental responses agree quite well
with respect to the stress–strain relationship, the
postpeak stress–displacement relationship and
the postpeak dissipated energy–displacement
relationship.
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