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Abstract: The paper presents an overview of a finite element approach for the analysis of the 

Concrack benchmark RL1. The approach adopted includes a thermo-hygro component which is 

coupled to a mechanical model which includes non-linear mechanical, aging, shrinkage and long 

term creep behaviour. The thermo-hygro model solves the mass balance equations for water vapour 

and liquid water as well as the enthalpy balance equation. A particular focus of the paper is on the 

model used to describe the development porosity with hydration. It is concluded that a correct 

treatment of porosity development over time is essential for the proper simulation of the Concrack 

material data and benchmarks. 
 

 

1 INTRODUCTION 

The paper considers the analysis of one of 

the benchmark problems from the CEOS.fr 

project [1] using a hygro-thermo-mechanical 

model implemented in the finite element 

program LUSAS.   

An overview of the modelling approach is 

provided but particular attention is paid to the 

simulation of early age porosity and its 

importance in the analysis. The reason for 

concentrating on this aspect is that in an earlier 

presentation by the authors at a benchmarking 

workshop, entitled Concrack2 [1], the authors’ 

results for early age shrinkage were inaccurate 

and one of the reasons identified for this was 

an inconsistency between the liquid mass-

balance and the porosity development model 

being used.  

The evolution of shrinkage and porosity are 

closely linked phenomena. The hydration of 

cement and external drying remove water from 

the cement matrix and this gradually empties 

the space or pores of liquid and results in 

menisci at liquid-gas interface where capillary 

pressures manifest [2]. The capillary tensions 

cause stresses in the skeleton and lead to 

macroscopic shrinkage. Thus, porosity 

development has a significant influence on the 

estimation of shrinkage. 

The overall approach to simulating hygro-

thermal behaviour is similar to that of Gawin 

et al [3] with the exception that only one fluid 

phase is considered rather than two. This is 

possible due to the assumption that the gas 

pressure is maintained at atmospheric.    

A staggered approach is taken to simulating 

the hygro-thermal (H-T) and mechanical 

components of the analysis in which a hygro 

thermal step is followed by a mechanical step.   

2 GOVERNING H-T EQUATIONS 

The averaged macroscopic mass balance 

equations for liquid (capillary and absorbed 

water) and vapour phases are as follows; 

  ������� � ���	
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  (1) ������ � ���	
�� � ���                                       (2) 

where ���  is the rate of mass transfer during 

evaporation of liquid water, ���  is the rate of 

liquid water mass used in hydration which 

represents the sink/source term, ����� � ����� is 

the averaged density of phase (� = w or v), � 

is the porosity of the medium, �� is the degree 

of saturation of phase π, �� is the bulk density 

of phase, the superior dot denotes the time 

derivative with respect to solid skeleton and Jπ 

denotes the mass flux of phase π. 

   The macroscopic enthalpy balance equation 

for the multi-phase medium, assuming that all 

the phases are in thermal equilibrium, is as 

follows: 

  

���������� � ����������	��� � ��� �� �  ��      
                                                                      (3) 

  Where, T is the temperature of the medium, �������� � ∑ 	��������� � is the thermal capacity, kT is 

the effective thermal conductivity of cement 

paste, Hv is the specific enthalpy of 

evaporation and  ��  is the rate of heat 

generation of hydration. In the current model 

there is no constitutive law for ��, but this 

problem is solved by combining equations (1) 

and (2) into a single expression. 

3 CONSTITUTIVE LAWS AND 

HYDRATION MODEL 

  Liquid phase advection/permeation is 

assumed to obey Darcy’s law and diffusion of 

the vapour phase to follow Fick’s law: 
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where k
i
 is the intrinsic permeability 

coefficient dependent on the degree of 

hydration, k
rw

, ,� , pw
 and M

w
 are the relative 

permeability coefficient, the dynamic 

viscosity, pressure and molar mass of phase w, 

g is the gravity vector, R is the ideal gas 

constant, D
v
 represents the effective diffusivity 

of vapour in the air while p
v
 is the water 

vapour pressure. The capillary curve defined 

in eq. (7) provides the relationship between 

capillary pressure p
c
 and Sw. The expression 

adopted is a version of van Genuchten’s 

equation [4] used by Baroghel-Bouny et al. 

[5].  
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where ac and b are material parameters, patm is 

the atmospheric pressure and => is the surface 

energy at reference temperature. Clapeyron’s 

state equation correlates pressure to mass 

concentration, Kelvin’s equation delineates 

internal relative humidity, hr, whilst Laplace 

equation defines p
c
 as a function of surface 

tension, σ and pore radius, r: 

  

�� �  �?)?
*�                                                     (8) 

  

@A � BC' 0D �1)%
E%*� 8                                      (9) 

  

 'F � GH
A                                                       (10) 

 

The curing of the cementitious material is 

described by Schindler and Folliard’s 

hydration model [6]: 

 

I	JK� � I∞BC' L 0MNOPQ 8
RNOS                        (12) 

 

where I is the degree of hydration at 

equivalent time te, I∞ is the ultimate degree of 

hydration at complete theoretical hydration 

whereas TUV and WUV are the hydration time and 

shape parameters. te takes into account the 

coupled effect of time and temperature on 

different thermal curing methods on the basis 

of Arrhenius rate theory for chemical 

reactions.  

  

4 AGING PROPERTIES, CREEP & 

SHRINKAGE 

Elastic properties and strengths are assumed 

to depend directly upon the degree of 

hydration. For example, the elastic modulus is 
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given by 

( )Γ = Γ Ec

f rE E                  (13) 

where cE  is a constant, and Γr= Γ/ Γ∞

 

 

Creep is simulated with a modified form of 

Bazant’s solidification theory [7], in which -at 

each time interval during curing- there is an 

addition of a stress free rheological unit which 

comprises different proportions of a long-term 

and a short-term Maxwell unit. The idea is 

illustrated below: 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Solidification creep model. 

Autogenous and drying shrinkage are 

computed from changes in the degree of 

saturation and degree of hydration. Here we 

have not used p
c
 to compute shrinkage but 

rather chosen nonlinear functions of Sw and Γ. 

It is noted that once hydration is complete, 

experimental data shows that there is a 

remarkably linear relationship between weight 

loss and drying shrinkage for a normal 

environmental range of humidity [8], i.e. 

ds ds wSε β= ��                                           

5 MECHANICAL MODEL 

The constitutive model for concrete is based 

on a modified version of the model described 

in [9]. Two major modifications have been 

made for the work on simulating early age 

behaviour. The first involve a modification of 

the plastic and damage evolution functions 

such that they depend upon the degree of 

hydration. Results from an example analysis 

using the data from Yi et al [10] is shown in 

Figure 2. 

 
Figure 2: Compressive response for different times. 

The second major change involves using an 

entirely smooth relationship for rough crack 

contact as well as an approach to the solution 

of the nonlinear equations which does not 

involve using a negative tangent modulus. 

These changes have greatly improved the 

stability of the solution process. Details are to 

be given in a forthcoming publication. 

 

6 DEVELOPMENT OF POROSITY 

WITH HYDRATION 

As mentioned in the Introduction, the 

primary focus of the paper is on the 

development of porosity over time and the 

need for an approach which is consistent with 

the moisture mass balance equation. 

A few hours after mixing, the cement paste 

is plastic and all the pores are filled with pore 

solution. During this period all the chemical 

shrinkage manifest itself into an external 

volume change and the water degree of 

saturation remains constant and close to 1. 

Later, when a percolation threshold hydration 

degree is exceeded, the paste starts to gain 

stiffness and, due to shrinkage, voids are 

formed within the mix. In the second stage of 

hydration the small voids nucleate into larger 

pores leading to a stabilised capillary network. 

Two types of pores can be identified inside the 

hydrated paste according to their size: 

capillary pores ≥12nm and gel pores ≤ 12nm 

[11]. In the early stages, capillary pores are 

predominant, but, as the hydration process 

proceeds, the proportion of gel pores gradually 

increases with respect to the capillary ones. A 
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shift of the pore size distribution to smaller 

pores with time is measured. Experimental 

evidence suggests an essentially linear 

relationship between porosity and degree of 

hydration [12]. In this paper, porosity is 

estimated from the quantity of cement paste 

constituents at the end of the chemical 

reactions and by assuming that the reaction 

products advance proportionally with the 

overall hydration degree of the paste. Powers’ 

model [13] for cement hydration provides a 

general expression of porosity which for 

concrete has the form: 

  

�	I� �
X>Y> �

ZK4��Y>  LI · �\ ��Y> � ZU	I�
��Y> S���F �

X>Y> �
ZK4��Y> � ∑Z4]] ��Y>

 

             (13) 

 

where � is porosity, 
�3
F3  is the water cement 

ratio, �\ material coefficient, Vea is the volume 

of entrapped air, �F is the density of cement, ZU	I� is the volumetric strain do to autogenous 

shrinkage, and ∑Z4]] is the volume of 

aggregates. �\ differentiates capillary from 

total porosity and is obtained by evaluating the 

quantities of water forms using stoichiometry 

of the four main clinker minerals. The 

chemical reactions considered for these 

components essentially follow those given in 

references [11] and [14]. 

An example simulation is presented using 

an experiment undertaken by Baroghel-Bouny 

[5], in which autogenous drying takes place. 

The relative humidity referred to on the graph 

is internal relative humidity calculated from 

equation 9. 

7 CONCRACK BENCHMARK 

Full details of the Concrack benchmark 

(RL1) and associated material data are given 

on the project web site [1]. 

As mentioned earlier, one of the concerns 

regarding the authors’ earlier simulations was 

an inability to correctly predict the material 

test data for autogenous drying. 

 

 
Figure 3:Autogenous drying of concrete. 

Using the refined porosity and shrinkage 

models, this situation has improved and an 

illustrative graph showing the prediction of the 

autogenous response from the Concrack 

material data is given in Figure 4. 

  

 
Figure 4: Autogenous drying for Concrack material. 

Direct moisture content values were not 

available for the RL1 benchmark but 

temperatures, strains and displacements were 

available. The predictions regarding 

temperature and overall deformation are given 

in Figures 5 & 6. 

 

 
Figure 5:Temperature variation for Concrack test 
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Figure 6: Overall response for Concrack test RL1

8 CONCLUDING REMARKS

The paper has presented an overview of an 

approach to the analysis of the time dependent 

behaviour of concrete along with some 

illustrative results for the Concrack benchmark 

RL1. 

In addition, more detailed information is 

provided on one aspect of the approach, 

namely the porosity development model. A 

correct treatment of porosity development over 

time was found to be an essential for the 

proper simulation of the Concrack material 

data and as well as for the full scale tests 

themselves.  
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