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Abstract. During the last five decades, several experimental models and numerical models have been
developed to predict the time-dependent deformation of concrete under cyclic loading. It is well
known to engineers that creep accounts for a majority of structural deformation and failures. In plain
and reinforced concrete structures, cyclic creep may lead to excessive deformation, excessive crack
widths or structural collapse. The deformation in concrete under cyclic loading depends on a number
of parameters, such as, the concrete composition, environmental condition, strength of concrete, mod-
ulus of elasticity, the stress amplitude, the mean stress, number of cycle, wave forms and time under
load. In this work, the quantification of uncertainty of creep models under cyclic loading is computed
using four different creep models, (BP model, Neville und Whaley model, modified MC90 model and
modified Hyperbolic model) by considering different uncorrelated and correlated parameters respon-
sible for cyclic creep. Four sources of uncertainty parameters uncertainty, model uncertainty, data
uncertainty, and uncertainty of the creep phenomenon are considered for all of the models and com-
pared showing significant differences. A general probabilistic method is developed for the prediction
quality of creep models under cyclic loading. The Latin Hypercube Sampling (LHS) numerical sim-
ulation method (Monte Carlo type method) was used. Further, global sensitivity analysis considering
the uncorrelated and correlated parameters are used to quantify the contribution of each source of
uncertainty to the overall prediction uncertainty and to identify the important parameters. The error
in determining the input quantities and model itself can produce significant changes in creep predic-
tion values. The variability influence of input random quantities on the cyclic creep was studied by
means of the stochastic uncertainty and sensitivity analysis. All input imperfections were consid-
ered to be random quantities. The Latin Hypercube Sampling (LHS) numerical simulation method
(Monte Carlo type method) was used. It has been found by the stochastic sensitivity analysis that the
cyclic creep deformation variability is most sensitive to the Elastic modulus of concrete, compressive
strength, mean stress, cyclic stress amplitude, number of cycle, in that order.
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1 INTRODUCTION
Because of the uncertainty associated with

concrete and creep modeling under cyclic load-
ing, uncertainty should be accounted for in
model application and evaluation [1, 2]. The
analyis and consideration of uncertainty is par-
ticularly important because decisions regarding
design of concrete structures,and the repair and
deflection of concrete structures are increas-
ingly based on creep modeling. A recent change
is the application of monitoring and experiman-
tal data for a safety analysis in various fields
of engineering. The most relevant question of
the application of experimental and monitoring
data is: Which uncertainties should be applied
to the experimental and monitoring data when
utilised in a safety and serviceability analysis?
This question is answered with this paper using
the existing framework for the determination of
measurement uncertainties based on ISO/IEC
Guide 98-3 (2008a) [3].

Uncertainty in creep and shrinkage mod-
eling has been classified by [1, 4] into four
categories: model uncertainty, parameter un-
certainty, measurement uncertainty and phe-
nomenon uncertainty. The uncertainty intro-
duced by model structure and parameterisation
has received much attention in recent years
[1, 4, 5]. Simply speaking, model uncertainty
arises from incomplete understanding of the
system being modeled and/or the inability to ac-
curately reproduce creep processes with math-
ematical and statistical techniques. This in
contrast, to parameter values, ranges, physical
meaning, and temporal and spatial variability.
But parameter uncertainty also reflects the in-
complete model representation of cyclic creep
phenomenon and inadequacies of parameter es-
timation techniques, and often limited, mea-
sured data.

Although the uncertainty inherent in mea-
sured data used to calibrate and validate model
predictions is commonly acknowledged, mea-
surement uncertainty is rarely included in the
evaluation of model performance. One reason
for this omission is the lack of data on the uncer-
tainty inherent in measured cyclic creep data.

For additional information on models and
parameter uncertainty, which is carried out, one
method of importance measurement of models
by considering the uncorrelated and correlated
parameters is proposed by [6]. The distinction
between uncorrelated and correlated contribu-
tion of uncertainty for an individual variable is
very important and output response and input
variables is approximately linear in this method.

In this work, is a description of method for
the determination of the measurement uncer-
tainty for creep strain measurements follow-
ing ISO/IEC Guide 98-3 (2008a) [3]. Sub-
sequently these methods are extended to ac-
count for model uncertainties and a probabilis-
tic model assignment uncertainty. Furthermore,
the measurement uncertainties based on a pro-
cess equation and based observation are de-
rived. In the third section the core of the in-
troduction concept is derived and discussed,
namely the posterior measurement uncertainty
and sensitivity analysis.

For the detailed description of four cyclic
creep models refer to [7–13].

2 SOURCES OF UNCERTAINTY

This section describes the different sources
of uncertainty in the cyclic creep prediction.
These sources of uncertainty can be classified
into three different types-physical or natural un-
certainty, data uncertainty and model uncer-
tainty - as shown in Fig.1. Fig.1 shows the dif-
ferent sources of error and uncertainty consid-
ered in this paper for the sake of illustration of
the proposed methodology. There are several
other sources of uncertainty that are not consid-
ered here. Each of these different sources of
uncertainty is briefly discussed below.
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Figure 1: Sources of uncertainty in cylci creep prediction.

2.1 Physical or natural uncertainty
Physical or natural uncertainty refers to

the uncertainty or fluctuations in the environ-
ment, test procedures, instruments, observer,
etc. Hence, repeated observations of the same
physical quantity do not yield identical results.
This paper considers the physical uncertainty in
loading and materials properties. The uncer-
tainty in the systematic errors to the measure-
ment, human error, the variability in other ma-
terials properties such as Poisson ratio, supple-
mentary cementing materials, the curing time
period, temperatures, etc.is not considered. The
probabilistic analysis considered the relation-
ship of concrete compliance function J(t − t0)
defined using Eq.(1) with the input variables
that cover both intrinsic and extrinsic factors
[14].

J(t− t0) =
1

σ(t0)
[εel(t0) + εcr(t, t0)] (1)

where σ(t0) is the creep stress, εel(t0) is the in-
stantaneous elastic strain, and εcr(t, t0) is the
creep strain between time of load application t0
and time of evaluating creep t. The selected
model can be described by Eq(2) where the
strain can be defined using by Eq(4).

J(t− t0) =
∑

k=1...m

xkεk = xT ε (2)

ε = (XTX)−1XTJ (3)

J is the vector of Nconcrete compliance ob-
servations and the matrix X consists of the m
effects corresponding to the N observation as:

J=


J1
J2
...
JN

; X =


x1,1 x1,2 · · · x1,m
x2,1 x2,2 · · · x2,m

...
xN,1 xN,2 · · · xN,m



2.2 Measurement uncertainties

The measurement uncertainty following
ISO/IEC Guide 98-3, 2008a [3] is determined
with a measurement equation which yields the
measurand. The uncertainties of the input quan-
tities, i.e. the (random) variables, determine
the uncertainty of the measurand. One type
of measurement uncertainties is derived by as-
signing a statistical model to observations us-
ing the definition of probability. Other types of
measurement uncertainties are derived with the
help of a process equation modeling the mea-
surement process physically. The probabilistic
models of the associated random variables are
evaluated by scientific judgment based on all of
the available information (ISO/IEC Guide 98-
3 [3] implying a Bayesian definition of proba-
bility. It is possible to characterise three type
of uncertainty during the measurement of the
cyclic creep strain: uncertainty related to mea-
surement, uncertainty due to the positioning of
the gauges and uncertainty due to the installa-
tion.

Based upon the physical properties of the
measurement process, the process equation
is derived and uncertainty models are intro-
duced for the associated random variables.
This derivation takes basis in the concept for
the determination of uncertainties according to
ISO/IEC Guide 98-3 [3]. In addition to this
concept, a model uncertainty and an assignment
uncertainty are introduced. The starting point
for the derivation of the process equation is the
measurement equation Eq (1). The introduc-
tion of the model uncertainty in strain measure-
ment, which describes the uncertainty associ-
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ated with the physical formulation of the prob-
lem, leads to Eq (1). With an associated un-
certainty model, the measurement uncertainty
can be derived e.g. with a Monte Carlo simu-
lation. The uncertainty model can be derived
by considering the product information of the
measurement system. The product information
is usually valid for all strain gauges of the same
type, all amplifiers of the same type and for all
surrounding and application conditions as doc-
umented in the manufacturer specifications ac-
cording to standardised rules [16]. The mea-
surement uncertainty based on observations of
the cyclic creep strain follow a normal distribu-
tion with the parameters µ and σ Eq 4.

εtotal ∼ N(µ, σ) (4)

The parameters of the distribution are esti-
mated with the method of Maximum Likeli-
hood. For the calcultion of the marginal dis-
tribution, the statistical uncertainties of the pa-
rameters are integrated Eq 5.
fεcr,cyc(εcr,cyc) =∫ ∞

−∞
f(εcr,cyc |(µ, σ).f(µ).f(σ)dµdσ) (5)

With Bayesian updating the posterior mea-
surement uncertainty, i.e. the distribution of the
measurement uncertainty accounting for prior

knowledge and observations, is derived Eq 6.

f ′′(εcr,cyc) = f ′(εcr,cyc).L(εcr,cyc) (6)

The uncertainty model for the variation of
the cyclic creep strain calculation based on the
measurement is summarised in Table 1. A nec-
essary condition for Bayes’ theorem is that the
probability of observing any particular data out-
come for a given state must be known. This
information is often available from laboratory
testing, product literatures, or past experiences.
Information about an input quantity X con-
sists of a series of indications regarded as real-
isations of independent, identically distributed
random variables characterised by a PDF, but
with unknown mean and variances. Calcula-
tion therefor proceeds in two steps:- first, a
non-informative joint prior- (pre-data) PDF is
assigned to the unknown mean and variances.
This joint prior PDF is then updated, based on
the information supplied by the series of indica-
tions, to yield a joint posterior (post-data) PDF
for the unknown parameters, which is shown
in Figure 2.The desired posterior PDF for the
unknown mean is then calculated as a marginal
PDF by integrating over the possible values of
unknown variances. The updating is carried out
by forming the product of a likelihood function
and the prior PDF.

Table 1: Uncertainty model for the cyclic creep measurement and prediction

Random Variable Mean Std. CoV Distribution Models Sources
fc,28 52.00 MPa 3.12 0.06 Log-normal 1,2,3,4 [17]
fd 50.70 MPa 3.00 0.06 Log-normal 1,2,3,4 Assumed

Eci,28 34144 MPa 3414.4 0.10 Log-normal 1,2,3,4 [17]
Ed 33290 MPa 3329.0 0.10 Log-normal 1,2,3,4 Assumed

Humidity 0.65 0.026 0.04 Normal 1,2,3,4 [15]
Cement content 362 kg/m3 36.20 0.10 Normal 1,3 [1]

Water.cement ratio 0.50 0.05 0.10 Normal 1 [1]
Sand-cement ratio 5.16 0.156 0.10 Normal 1 [1]

Frequency 9 Hz 0.72 0.08 Normal 1,3 Assumed
Mean stress 0.35fc 0.035 0.10 Normal 1,2,3,4 Assumed

Stress amplitude 0.3fc 0.03 0.10 Normal 1,2,3,4 Assumed
Number of cycles 106 80000 0.08 Normal 1,2 Assumed

1 = BP, 2 = modified MC90/CE 2 , 3 = modified Hyperbolic , 4 = Neville
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The likelihood function is the product of
functions, one function for each indication,and
is identical in form, e.g., to a Gaussian PDF
with expectation equal to the indication and
variance formally equal to the unknown vari-
ance.

In Figure 2, plots are shown for the prior and
the posterior probability density for mean ob-
served cyclic creep function.
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Figure 2: Illustration of prior and posterior probability
density for the observed mean of cyclic creep. Also the
likelihood for the test results is shown.

All three (prior, likelihood and posterior un-
certainty) are applied to determine the mea-
surement uncertainty. For the process equation
based measurement uncertainty, the uncertainty
associated with the assignment of a probabilis-
tic to a measured cyclic creep strain is mod-
eled. In Figure 2 the probability densities for
the mean of the statistical model are depicted.
The posterior density, calculated with Bayesian
updating, is then orientated closer to the likeli-
hood with a slightly higher density.

The measurement uncertainty obtained by
observation has different boundary conditions
associated with the probability models calcu-
lated separately. The process equation based
measurement uncertainty is seen as the accumu-
lation of prior knowledge of the measurement
process. It becomes clear that the measurement
uncertainty for a specific application is not ex-
actly determinable and that furthermore, both
concepts for the determination of the measure-

ment uncertainty have their different boundary
conditions and their limitation [16].

In order to carry out MCM of the Bayesian
updating by running the program in MATLAB,
for ndigit = 1 it performed 106 evaluations of
the different models until the stabilisation of the
results. It gives the estimate cyclic creep with
associated standard uncertainty, and measure-
ment uncertainty, (CVϕ,β) or u(Ex))); For sim-
plification in this work, (standard uncertainty
u(Ex))), is written as measurement uncertainty
(CVϕ,β), which is shown in the last row Table
2, with a shortest 95 percentage coverage inter-
val. Noted in this work, is the method of calcu-
lating the measurement error and predicted val-
ues to consider measurement uncertainty with
the goal of facilitating enhanced evaluation of
cyclic creep models. The basis of this method
was the theory that cyclic creep models should
not be evaluated against the values of measured
data, which are uncertain, but against the in-
herent measurement uncertainty. Especially for,
the deviation calculation of the probability dis-
tribution of measured data, the value of inter-
nal uncertainty is assumed. Apparently, the out-
put has a Gaussian shape, see Figure 4, which
is usually predicted. However, in detail the
statistical study, results show a deviation from
normally, due to the excess kurtosis coefficient
value of 0.5. In order to study the behaviour of
the output PDF and the relations with the sev-
eral model parameters, a sensitivity analysis fo-
cusing on the measuring uncertainties was
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Figure 3: Output PDF of cyclic creep obtained for MCM

5



Motra, H. B., Osburg, A. D. and Hildebrand, J.

also carried out, allowing the identification
of critical parameters for the measurement un-
certainty magnitude and the output PDF shape.

Table 2: Uncertainties in cyclic creep models

Model 1 2 3 4
U(E(total)) 0.283 0.306 0.300 0.380

U(E(internal.)) 0.080 0.080 0.080 0.080
U(E(posterior)) .062 0.086 0.093 0.121

1 = BP, 2 = modified MC90/CE 2 , 3 = mod-
ified Hyperbolic , 4 = Neville

2.3 Model uncertainty
Model uncertainty is the uncertainty related

to imperfect knowledge or idealisations of the
mathematical models used or uncertainty re-
lated to the choice of probability distribution
types for the stochastic variables. Even when
there occur no measurement uncertainty (or
when it is negligible), there may be some dis-
crepancies between the predicted and observed
values in most situations. This is called model
error or uncertainty.

3 EVALUATION OF MODELS QUALITY
CONSIDERING MEASUREMENT UN-
CERTAINTY

The mean value of the predicted cyclic func-
tion of the four models for a short time is pre-
sented in Fig 4. Because the initial elastic
strains were not reported, due to pronounced
short-time creep duration, they had to be as-
sumed, and thus the compressions are relevant
only to the part of strain representing the creep
increase due to the part of strain cycling. Signif-
icant errors have often been caused by combin-
ing the creep coefficient with an incompatible
value of the conventional elastic modulus. Thus
analysis must be properly based on the cyclic
creep function. In Fig. 4 the data of all four
models show quite different values in the first
hour of testing and at 100 hours the difference
shown is minimal despite the use of a similar
concrete and testing condition. This may be due
to fluctuation in time to the physical mechanism
of creep. The modified MC90/EC2, Neville and
modified hyperbolic models are based only on

the set of data and may not be applicable to con-
ditions substantially different than these during
the experiments.
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Figure 4: Mean value of creep function.

Fig. 5 and 6 shows that the results of the un-
certainty analysis of four different models. Both
Figs. showed that the correlated and uncorre-
lated contribution of input variables have made
important contributions to the uncertainty in
model output. The uncorrelated input variables
uncertainty of model Neville is very small, only
the contribution of four variables. On the other
hand, the input variables are notable effects on
the output, because there are more variables
and the complex model and model uncertainty
is small. The correlated and uncorrelated in-
put variables for the model Neville shows the
largest uncertainty CVpar,crcyc(t − t0) = 0.08
at t = 1 h and uncertainty CVpar,crcyc(t − t0) =
0.06 at t = 100 h, the uncertainty goes to de-
creasing with the increasing time under load.
The uncorrelated input quantities uncertainty
of model mod. MC90 and mod. Hyperbolic
CV par, crcyc(t − t0) = 0.10 and are almost
independent with time. Model BP has strongly
time-dependent uncertainty varying in the range
of CVpar,crcyc(t − t0) = 0.11 · · · 0.08. Taking
into account the input variables real correla-
tion of the Neville model the input variables in-
crease significantly CVpar,crcyc(t − t0) = 0.08
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and may cause the effect of strong correlation of
strength and young modulus of elasticity. Com-
paring the total uncertainty of the models from
Fig. 6, we conclude that the model and mea-
surement paly the important role on the uncer-
tainty behaviour of models. In comparison of
all models, BP has the lowest total uncertainty
CVpar,crcyc(t− t0) = 0.30 and Neville model
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Figure 5: Input variables uncertainty of cyclic creep pre-
diction

has highest total uncertainty CVtot,crcyc(t −
t0) = 0.40.. The models mod. MC90, mod.
Hyperbolic and Neville are based on the experi-
mental data and also, assumed time strain equa-
tion always satisfactorily fit the experimental

data, such that long-term values cannot be es-
timated with confidence. Generally, the longer
the time over which creep has actually been
measured, the better the prediction. The CV in
the initial time of loading shows a higher fig-
ure and with increasing time, because the initial
time shows more uncertainty in measurement.
The most important variable at short-time creep
is model uncertainty factor for all models.
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Figure 6: Total uncertainty of cyclic creep prediction

Total model quality (MQ) can be used to bal-
ance the better response of the model to its un-
certainty in order to select the model that is
most suitable for a certain response. Fig. 7
show the time-dependent model quality. MQ
which is dependent upon total uncertainty con-
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sidering the correlated input quantities. The
MQ is slight time dependent. For this reason,
the time interrogation is according to [4] and
results are given in Fig 5. In all these compar-
isons, model BP is found to be the best. CEB-
MC90/EC2 model, which modifies its original
model MC90/EC2 by co-opting key aspects of
cyclic loading (the mean stress and stress am-
plitude function and dependence on the num-
ber of cycles would simply mean a loading fre-
quency), comes out as the second best. Consid-
erably worse but the third best overall is seen
to be the modified Hyperbolic model. Since the
current the Neville model, labelled Neville, is
the simplest, introduced in 1973 on the basis
of Neville’s research, it is not surprising that it
comes out as the worst, because it is based on
only four variables and there is no considera-
tion of concrete composition and environmental
variables.
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Figure 7: Total uncertainty of cyclic creep prediction

3.1 Sensitivity analysis (SA)
For the quantification of the influences of

the individual parameters on the cyclic creep
strain, a sensitivity analysis is performed. SA
is required to find out the dominant effect of
the variability of input random variables on the
cyclic creep strain. Fig. 8 shows the results
of the sensitivity analysis of uncorrelated and
correlated variables. For the calculation of the

sensitivity, the model uncertainty is not consid-
ered. It is assumed that the sensitivity indices
are up to

∑pK
p′=1 Sp = 1. The normalisation

is necessary due to consideration of correlation,
which may be the results of sensitivity indices
Sp ≥ 1. From this arises the difficulties in the
comparison between the uncorrelated and cor-
related indices. High value of sensitivity Sp
indices means highly influential on the uncer-
tainty. For example Sp = 1 means only this
quantities affect the output. [6] method is used
in this paper for the global sensitivity analysis.

          

 

 

  

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Time under load (Log scale (t-t
0
)) [h]

U
n
c
o
rr

e
la

te
d
 S

e
n
si

ti
v
it

y
 i

n
d
ic

e
s 

(S
p

 c
y

c
)

 

 
RH

C

w/c

a/c

k
s

f
c

f



10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Time under load (Log scale (t-t
0
)) [h]

C
o

rr
e
la

te
d

 S
e
n

si
ti

v
it

y
 i

n
d

ic
e
s 

(S
p

 c
y

c
)

 

 
RH

C

w/c

a/c

k
s

f
c

f



Figure 8: Uncorrelated and correlated sensitivity indices
of model BP

In the model BP sees a more time dependent
sensitivity indices over time. The main reason
behind this is the increased combination of time
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function with the input quantities. It is seen
that the most sensitive quantities turn out to be
concrete strength. In second place is the con-
tent of the cement when quantities are assuming
the uncorrelated. Further, the stress amplitude
and frequency is the third and fourth influence
quantities. The influence of water-cement ratio,
aggregate-sand ratio and humidity are also con-
siderable. The concrete strength is most domi-
nating in quantities when considering the quan-
tities correlation. The second dominant quantity
is the cement content and stress amplitude. The
sensitivity indices of cement content and stress
amplitude show a small decrease with increas-
ing time. In cyclic parameter it is observed that
there are considerable influences.

4 CONCLUSION
This paper investigated the various sources

of uncertainty in a cyclic creep prediction and
illustrated the proposed methods to the quality
of the overall uncertainty in cyclic creep predic-
tion for structures with complicated geometry
and cyclic loading. Several sources of uncer-
tainty measurement uncertainty, physical vari-
ability, data uncertainty and modeling errors -
were included in the prediction. A framework
for the determination of uncertainties is intro-
duced. This framework, which is elaborated on
the example of cyclic creep strain measurement,
accounts explicitly for the assignment of the un-
certainty of a probabilistic model to a measure-
ment value and for model uncertainties.

The new concept of measurement uncer-
tainty, the posterior measurement uncertainty
and cyclic creep strain measurement uncer-
tainty are derived by Bayesian updating. The
prior and the likelihood are informative dis-
tribution as the prior measurement uncertainty
and the likehood is associated with probabilis-
tic models of observations. Physical variabil-
ity included loading conditions and materials
properties such as stress intensity. The suc-
cess of the evaluation of measurement uncer-
tainties depends on the nature of the metrogoli-
cal problems considered, being particularly rel-
evant to the nature of the mathematical models

used. The uncertainty in data used to charac-
terise these parameters was taken ino account.
The variability influence of input random quan-
tities on the cyclic creep was studied by means
of the stochastic uncertainty. The Latin Hyper-
cube Sampling (LHS) was used.

The uncertainty and sensitivity analysis is
computed using the LHS sampling technique.
It is seen from the uncertainty analysis that the
complex cyclic creep model BP has the good
MQ and less uncertainty but the simple Neville
model has higher uncertainty and lower model
quality. In contrast, the complex model needs
computational effort and more input variables.
Accounting for measurement uncertainty and
model uncertainty with this methodology can
improve model calibration by reducing the like-
lihood.

Also, the proposed approach for uncertainty
quantification is applicable to several engi-
neering disciplines and the domain of cyclic
creep analysis was used only as an illustration
to develop the methodology. In general, the
proposed methodology provides a fundamen-
tal framework in which multiple models can
be connected through a Bayes network and the
confidence in the overall model prediction as-
sessed quantitatively.
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