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Abstract. A mesoscopic masonry model is presented using the partition of unity finite element

method. Joints are only explicitly introduced when a critical stress state is exceeded, resulting in

a computationally more efficient procedure when compared to models in which all joints are a priori

active. The performance of the presented model is demonstrated by several numerical examples.

1 INTRODUCTION

Although an ancient building technique, ma-

sonry is still widely used in modern structures

due to its relatively simple way of construct-

ing. The failure modelling of these structures

remains, however, a great challenge due to their

composite nature. Two major modelling scales

exist: macroscopic and mesoscopic. The for-

mer approach homogenises bricks and joints

to one orthotropic material [1, 2] whereas in

mescoscale models bricks and joints are mod-

elled as separate entities, resulting in a more

detailed crack pattern at the expense of more

degrees of freedom and, consequently, yields

a higher computational cost [3–7]. Recently,

multiscale models have been developed and op-

timised to bridge the two modelling scales [8–

11].

The masonry model presented in this con-

tribution is a mesoscopic model in which

the mortar joints are incorporated as poten-

tial strong discontinuities using the partition of

unity method [12] as discussed in Section 2.

The enhanced degrees of freedom, stemming

from this technique, govern the nonlinear joint

behaviour [13]. In contrast to classical meso-

scopic masonry models, the joints are not ac-

tive at the beginning of the calculation, resulting

in less degrees of freedom. If a critical stress

state is exceeded, the joint is activated and the

corresponding enhanced degrees of freedom are

added to the global system of equations. The

employed material model, a shifted damage law

based on a degenerated Drucker-Prager crite-

rion, is presented in Section 3. This section

will also address a modified equilibrium path-

following procedure used in this study. In Sec-

tion 4, three numerical examples are given in

order to show the performance of the new ma-

sonry model.
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2 MESOSCOPIC MODELLING OF MA-

SONRY USING THE PARTITION OF

UNITY METHOD

2.1 Kinematic description of the masonry

model

In the presented two-dimensional meso-

scopic masonry model, a partition of unity

method is adopted in which the behaviour of

each brick is governed by a designated set of

enhanced degrees of freedom [13, 14]. Conse-

quently, the displacement field can be decom-

posed according to

u = û+

NB
∑

i=1

Hiũi (1)

where NB denotes the total number of bricks

within the masonry wall, û is the regular dis-

placement field, ũi and Hi are the enhanced

displacement field and enrichment function as-

sociated with brick Bi, respectively. Hi = 1
inside Bi. A graphical representation of the as-

signment of the degrees of freedom is given in

Figure 1. In order to avoid linear dependency

of the enrichment functions, the total number

of extra sets at each node should be reduced by

one if the node contains more than one extra set

of degrees of freedom as shown by Simone et

al. [14]. This is illustrated in the lower part of

the figure (Figure 1 (b)).
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Figure 1: Assignment of the degrees of freedom (DOF)

for a patch of masonry elements.

2.2 Activation of the enhanced degrees of

freedom

The partition of unity framework allows a

straightforward introduction of discontinuities,

i.e. joints, without the need of a high dummy

stiffness to mimic the pre-discontinuity phase.

Enhanced degrees of freedom, representing the

discontinuities, are simply added to the system

when necessary. In short, the algorithm in this

work is structured as follows: at the end of each

load step (thus in a converged state), the stresses

are evaluated at the joint positions through an

interpolation of the stresses in the bulk mate-

rial. If a critical stress state, governed by the

material model presented in Section 3, is ex-

ceeded, all nodes on the critical joint are en-

hanced, i.e. extra degrees of freedom are added

to the global system of equations. However, in

the case that only two joints are active at the

junction of three joints (joint BC and joint AC

in Figure 2), additional constraints are neces-

sary in order to prevent undesired joint opening

of the inactive (subcritical) joint (joint AB in

Figure 2). In the example of Figure 2, the con-

straint ũA − ũB = 0 is added to the system of

equations.
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joint AB
joint AC

joint BC

joint
opening
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regular DOF

enhanced DOF brick BA

enhanced DOF brick BB

enhanced DOF brick BC

inactive joint

Figure 2: The need of additional constraints in case of an

inactive joint (joint AB) at a triple junction of joints. (a)

nomenclature; (b) undesired joint opening of the subcrit-

ical joint.
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3 NONLINEAR MODELLING

3.1 Material model

In the developed masonry model, the brick

behaviour remains linear elastic throughout the

computation. However, since the mortar joints

are inactive at the start of the simulation, the

virgin material should also include the elas-

tic behaviour of the mortar joints. Ideally, an

anisotropic material model could be used, ob-

tained from the homogenisation of the elastic

mortar and brick behaviour. In this work a

simpler approach is followed, similar to [3], in

which the stiffness of the bulk material is ad-

justed in order to reproduce the experimental

elastic response of the masonry structure. The

adjusted Young’s modulus E ′
b of the bricks then

reads

E ′
b = αEb . (2)

The nonlinear joint behaviour is governed by a

shifted damage law of the form

td = (1− ω)Td[[v]] (3)

in which td is the traction at the joint, Td =
diag(kn, kt) is the joint stiffness matrix and [[v]]
represents the translated displacement jump at

the mortar joint [15]

[[v]] = [[u]] + [[u]]
0
. (4)

Figure 3 represents the shifted origin [[u]]
0
,

which is calculated from the bulk stress at the

moment of joint activation.

tn

[[u]]n

[[u]]n,0

Figure 3: Pure mode I representation of the shifted dam-

age law (dashed line).

The scalar damage variable ω in (3) is obtained

from

ω =

{

0 if κ < κ0

1− κ0

κ
exp

[

−κ−κ0

β

]

if κ ≥ κ0

(5)

where β =
hGfI

ft
− 1

2
κ0 in which h denotes the

joint thickness, GfI is the mode-I fracture en-

ergy, ft is the uniaxial tensile strength of the

mortar joints and the damage threshold κ0 =
ft/kn in which kn is the normal stiffness of the

joint. The history parameter κ stores the largest

value ever attained of the shifted equivalent dis-

placement jump [[v]]eq = f([[v]]), which is de-

fined by a degenerated Drucker-Prager model,

see [13].

3.2 Equilibrium path-following techniques

An important aspect in modelling masonry

and other solids containing many nonlinearities

is the use of a robust algorithm which is capa-

ble of tracing the whole equilibrium path, par-

ticularly the post-peak response of the structure.

In this work, a modified arc-length constraint

function is used to trace the equilibrium path of

the shear wall and settlement tests (Sections 4.2

and 4.3). Since the nonlinear behaviour of the

presented masonry model is solely governed

by the enhanced degrees of freedom ũ, they

are used as the control variables in the path-

following constraint function

g = ∆ũ
T∆ũ− τARCL

2 (6)

in which τARCL represents the enforced arc-

length of the equilibrium path during a load

step. In the case of the simulation of a three-

point bending test (Section 4.1), the crack

mouth opening displacement (CMOD) of the

lower middle joint is chosen as a control vari-

able, similar to the experimental test setup [16].

The constraint function is then given by

g = sT∆u− τCMOD (7)

where s selects the enhanced degrees of free-

dom describing the crack opening of the con-

sidered joint, and τCMOD denotes the allowed

opening in one load step. Since at the start
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of the calculation no enhanced degrees of free-

dom or CMOD are present, indirect displace-

ment control, controlling the regular degrees of

freedom, is used in the first load steps. The con-

straint function then becomes

g = sT∆û− τDISP (8)

in which s selects the degree of freedom where

the displacement τDISP is enforced during the

load step.

4 NUMERICAL EXAMPLES

4.1 Three-point bending test

In this first numerical example a three-point

bending test is simulated. Brick arrangement

and boundary conditions are reported in Fig-

ure 4. Material parameters (Tables 1 and 2)

and experimental data (Figure 7) are obtained

from [16]. Figure 5 depicts the active joints and

deformed mesh at the final loading stage. The

failure mode and corresponding load-CMOD

diagram (Figure 7) shows a good correspon-

dence with the experimental data and with the

results from a model in which all joints are ac-

tive at the start of the simulation (Figure 6).

An indication of the computational efficiency

is given by the evolution of the number of en-

hanced degrees of freedom during the computa-

tion, Figure 8.

1200

CMOD

344

F

Figure 4: Test setup and boundary conditions for the

three-point bending test. All dimensions are in mm.

Figure 5: Deformed mesh and active joints (in grey) at a

CMOD value of 2 mm. 40× displacement magnification.

Figure 6: Deformed mesh at a CMOD value of 2 mm for

a model with all joints a priori active. 40× displacement

magnification.
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Figure 7: Simulation and experimental load-CMOD dia-

grams.
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Figure 8: Evolution of the number of enhanced degrees

of freedom.
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Table 1: Setup and elastic material parameters for the three-point bending test.

dimensions Eb

[

N/mm2
]

ν kn
[

N/mm3
]

kt
[

N/mm3
]

α

joints 10 mm 416 172

bricks 76 × 230 × 110 mm3 17500 0,15 1,0

Table 2: Inelastic material parameters for the three-point bending test.

ft
[

N/mm2
]

fc
[

N/mm2
]

fb
[

N/mm2
]

GfI [N/mm]

joints 0,086 7,26 1,2 fc 0,002

4.2 Shear wall test

The second example is a shear wall with

opening [17]. Tables 3 and 4 list the material

parameters. A confining stress of 0,30 N/mm2

is applied on top of the wall prior to the ap-

plication of the horizontal loading. Boundary

conditions and test setup are depicted in Fig-

ure 9. Figures 10-13 show that both failure

mode and peak load correspond with the ex-

perimental data and the results obtained with

a masonry model in which all joints are a pri-

ori active. Figure 14 indicates that most of the

computational gain of the presented algorithm

is achieved during the first 30 load steps, i.e.

the load steps prior to the peak load of the struc-

ture. After reaching the peak load, 80% of the

enhanced degrees of freedom are activated.

(a) (b)

0,30 N/mm2

990

70

70

1106

F

Figure 9: Test setup and boundary conditions for the

shear wall test. (a) phase 1: confining load; (b) phase

2: horizontal loading. All dimensions are in mm.

Figure 10: Deformed mesh and active joints (in grey) at

a loading point displacement (LPD) of 0,5 mm. 100×

displacement magnification.

Figure 11: Deformed mesh and active joints (in grey) at

a LPD value of 4 mm. 10× displacement magnification.
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Table 3: Setup and elastic material parameters for the shear wall test.

dimensions Eb

[

N/mm2
]

ν kn
[

N/mm3
]

kt
[

N/mm3
]

α

joints 10 mm 82 36

bricks 52 × 210 × 100 mm3 16700 0,15 0,24

Table 4: Inelastic material parameters for the shear wall test.

ft
[

N/mm2
]

fc
[

N/mm2
]

fb
[

N/mm2
]

GfI [N/mm]

joints 0,25 10,5 1,2 fc 0,018

Figure 12: Deformed mesh at a LPD value of 4 mm for

a model with all joints a priori active. 10× displacement

magnification.
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Figure 13: Simulation and experimental load-

displacement diagrams.
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Figure 14: Evolution of the number of enhanced degrees

of freedom.

4.3 Settlement test

As a final numerical example, an end-

settlement of a blind wall is simulated. The ma-

terial parameters are the same as for the shear

wall test (Section 4.2), except the brick dimen-

sions are 290 mm×190 mm×140 mm. The be-

haviour of the soil is governed by an inter-

face element. Its normal compressive stiffness

kn,c = 0,030 N/mm2 whereas the normal ten-

sile stiffness and shear stiffness are zero. For

x < 0,6L, the settlement w takes the form [18]

w = exp

(

−2

(

x− 0,6L

0,4L− 0,6L

)2
)

wend (9)

in which x is the distance from the left side

of the wall, L is the length of the system

(5990 mm) and wend represents the settlement

if x ≥ 0,6L. Figures 15-16 depict the active
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joints at an end-settlement of 6 mm and 12 mm,

respectively. At the end of the loading pro-

cess, nearly all joints are active indicating that

the whole structure exhibits damage. However,

the major damage localises in a typical staircase

crack pattern, as observed in real structures sub-

jected to severe settlements [19]. Finally, Fig-

ure 18 depicts the evolution of the amount of

enhanced degrees of freedom during the com-

putation.

total enhanced DOF (1593)

active enhanced DOF

time step

d
eg

re
es

o
f

fr
ee

d
o
m

605040302010

1600

1400

1200

1000

800

600

400

200

0

Figure 18: Evolution of the number of enhanced degrees

of freedom.

5 CONCLUSIONS

In this contribution a new mesoscopic ma-

sonry model using the partition of unity method

was presented. Joints are only explicitly mod-

elled when a critical stress state is reached,

resulting in a computationally more appealing

procedure. In order to improve the robustness of

the algorithm, a modified path-following tech-

nique is employed in which the enhanced de-

grees of freedom are taken as control variables

in the arc-length constraint function. The per-

formance of the new model is demonstrated

by three-point bending, shear wall and settle-

ment tests. Future work will include the use

of more advanced material models that incor-

porate the initial orthotropic behaviour of the

masonry. The partition of unity framework also

allows straightforward applications such as the

modelling of brick cracking and the modelling

of irregular bond masonry using a simple mesh

since the latter does not need to conform to the

masonry joints.
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