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Abstract: Although reinforced concrete design typically allows for non-critical cracking of the 
concrete, such cracking is known to increase the effective permeability of concrete, which can 
promote various forms of structural deterioration. Numerical modeling offers opportunities for the 
study of these durability problems. In particular, lattice models are attractive for this purpose. The 
present work describes the fundamental concept and related recent developments of a dual-lattice 
model for coupled fracture-flow analyses of cementitious materials. The capabilities of this model 
are demonstrated by simulating water absorption in cracked reinforced concrete, the experiment of 
which was performed by Zhang et al. [24]. Comments are provided regarding more realistic 
simulations of reinforced concrete durability problems and potential future developments of this 
model. 
 
 

1 INTRODUCTION 
Design codes for structural concrete 

typically allow for non-critical cracking, and 
therefore cracking is inevitable in reinforced 
concrete structures. However, such cracking is 
known to accelerate the transport of moisture 
and other deleterious substances such as 
chlorides or sulphates, which greatly increases 
the potential for reinforcing steel corrosion and 
other mechanisms that lead to severe 
deterioration of reinforced concrete structures. 
Understanding such coupled fracture-flow 
phenomena is essential for the study of 
reinforced concrete durability. 

Numerical modeling offers opportunities 
for the study of these durability problems, 
complementing what knowledge can be gained 
from physical testing. Due in part to the use of 
discrete, two-node elements, lattice models are 
simple and effective in simulating fracture of 
such quasi-brittle materials [1-4] . Furthermore, 
recent developments of the dual-lattice 
concept [5-7] offer opportunities for realistic 
simulations of flow through fractured concrete 
materials. 

This paper first describes the fundamental 
concept of the dual-lattice models, in which 
the duality between the Delaunay tessellation 
and Voronoi diagram is utilized. Based on this 
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concept and use of the finite volume method, 
the discrete advection-diffusion equation on 
the flow lattice is derived and implemented. 
Secondly, the proposed method is verified by 
solving several basic problems. Finally, 
numerical simulations of water absorption in 
cracked reinforced concrete demonstrate the 
capabilities of the present method. 

2 FORMULATION 

2.1 Dual-lattice concept 
Dual-lattice models, as shown in Figure 1, 

are constructed by the following procedure: 1) 
Prepare a set of arbitrary points in the 
computational domain; 2) Decompose the 
domain into a set of tetrahedra (in 3D) or 
triangles (in 2D) using the Delaunay 
tessellation [8]; 3) Take the Delaunay edges as 
elements of the structural lattice; 4) 
Decompose the domain into polyhedra (in 3D) 
or polygons (in 2D) based on the dual Voronoi 
diagram; and 5) Take the Voronoi edges as the 
elements of the flow lattice.  

In the dual-lattice models, fracture analyses 
are performed on the structural lattice, whereas 
flow analyses are performed on the flow lattice. 
A potential cracking surface is the shared facet 
of two adjacent Voronoi cells as seen in 
Figure 2. It is noted that this surface coincides 
with a flow lattice element in two dimensions 
and is bounded by flow lattice elements in 
three dimensions. To couple the fracture and 
flow analyses, the amount of crack opening is 
evaluated for each structural element 
exhibiting fracture. The crack opening 
associated with a structural lattice element can 
be related to an increase of the permeability of 
the surrounding flow lattice elements, in 
accordance with theory or experimental 
observations [9-11]. 

2.2 Fracture analyses 

Each point used in the Delaunay 
tessellation has three degrees of freedom in 
two dimensions and six in three dimensions. 
Normal, shear, and rotational springs are 
placed between two Voronoi cells as shown in 
Figure 2. 

Concrete materials are assumed to crack 
when the stress reaches the prescribed tensile 
strength, and to soften according to a 
prescribed stress-crack opening relation 
(Figure 3). 

Additional details and validations of 
fracture analyses on the structural lattice have 
been presented elsewhere [1-4]. This paper 
focuses on the development of the flow lattice 
for flow analyses, with emphasis on the effects 
of cracking. 

2.3 Flow analyses 
The governing equation for the flow 

analyses appears as either the diffusion 
equation or the advection equation in the 
literature [12,13]. Transport of heat, moisture, 
oxygen, or carbon dioxide is expressed as a 
diffusion phenomenon, whereas ionic transport 
such as that of chloride or other ions is partly 
regarded as an advection phenomenon. 

In the present study, the following 
advection-diffusion equation is assumed to 
govern. 
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∂
∂ uθθθ D
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, (1)

where θ  is the unknown scalar function, t  is 
time, D  is the diffusion coefficient, and u  is a 
given velocity. No internal source or sink term 
is considered in Eq. (1). 

The authors have discretized Eq. (1) using 
the finite volume method [7] as done on the 
structural lattice in the literature [14,15]. The 
derived semi-discrete equations are: 
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where 
e
A  denotes the assembling procedure, θ  

is the column vector of the unknown scalar 
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values at all the nodes including those with 
Dirichlet boundary conditions, θ&  is the time 
derivative of θ , M  is the total capacity matrix, 
K  is the total diffusivity matrix, B  is the total 
advection matrix, f  is the term due to the 
Neumann boundary conditions, eM , eK , and 

eB  are the elemental capacity, diffusivity, and 
advection matrices, respectively, d  equals 2 in 
two dimensions and 3 in three dimensions, eA  
and eh  are the facet area and the length of 
element e , respectively (see Figures 4 and 5), 
and en  is the unit normal to the facet from 
node i  to node j . It should be noted that these 
elemental matrices coincide with those 
obtained by the finite volume method on the 
structural lattice [16,17]. 

The semi-discrete equation, Eq. (2), is 
discretized in time and solved using the Crank-
Nicolson scheme [18]. 

3 VERIFICATIONS 

3.1 Linear transient diffusion in a three-
dimensional random lattice 

A linear transient diffusion problem on a 
cubic domain is solved as a verification of the 
three-dimensional random lattice (Figure 6). 
The initial conditions and boundary conditions 
are expressed by Eqs. (6) and (7), respectively. 
Zero flux conditions are imposed on the other 
boundary surfaces. 

L
xtzyx πθ sin)0,,,( == . (6)

0),,,(),,,0( ==== tzyLxtzyx θθ . (7)

The initial condition and the potential 
development in time appear as blue dots in 
Figure 6 (right), together with the analytical 
solutions of Eq. (8) drawn in red lines.  
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The lattice solutions precisely agree with 
the analytical solutions. It is verified that the 
three-dimensional random lattice, constructed 
on the edges of the Voronoi polyhedra, solves 
linear transient diffusion problems. 

3.2 Periodic advection flow in a plane 
An advection problem on a square domain 

of L by L is considered to demonstrate the 
capability of solving the advection equation. 
The sine distribution of Eq. (9) serves as the 
initial condition, and the periodic boundary 
condition of Eq. (10) is provided. The domain 
is quasi-regularly discretized as presented in 
Figure 7 (a).  

L
xtyx πθ 2sin)0,,( == . (9)
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The evolution of the potential distribution 
in time is shown in Figure 7 (b). The 
periodicity is well reproduced despite some 
dispersion. Thus, it is verified that the 
advection equation can be solved on the two-
dimensional flow lattice. 

3.3 Water absorption in uncracked concrete 
Water absorption in uncracked concrete is 

simulated to verify the capability of solving 
non-linear diffusion problems. The Darcian-
flow modeling of capillary suction through 
concrete, expressed in terms of hydraulic 
diffusivity [19], is adapted in this study. The 
diffusion coefficient of such flow is given as 
Eq. (11), which is defined as an exponential 
function of reduced water content. 

θθ nDD exp)( 0= , (11)

rs

r
Θ−Θ
Θ−Θ

=θ
, 

(12)

where θ  is the potential variable representing 
the reduced water content, also known as the 
normalized water content or effective 
saturation, i.e. θ  ranges from 0 to 1, D0 is the 
base diffusion coefficient at θ=0, n is the shape 
term governing the profile shape, Θ is the 
volumetric water content, Θr is the residual 
water content, and Θs is the saturated water 
content. D0=2.2×10-4 (mm2/s) and n=6.4 [20] 
are used in the following simulation. It is 
noted that capillary suction models for 
unsaturated soil can be used as alternative 
formulations on the dual lattice [21]. 
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The domain, the discretization, and the 
boundary conditions are shown in Figure 8 (a). 
The domain is a square of 30 mm by 30 mm in 
two dimensions. Zero-flux (qn=0) boundary 
conditions are imposed on the three edges, 
whereas the θ = 1 potential boundary condition 
is imposed on the other edge. The initial 
condition is θ =0 all over the domain. 

The calculated distributions of the reduced 
water content at t=3, 15, and 60 min are shown 
in Figure 8 (b). It is observed that water 
ingresses from the bottom with some degree of 
uniformity. The solution along y axis 
(indicated as “lattice”) is compared with the 
one-dimensional finite difference solutions 
(indicated as “FDM”) in Figure 8 (c). The 
lattice solutions exhibit a slight delay from the 
finite difference solutions. The oscillation 
observed at t=3 min disappears at t=60 min.  

To quantitatively investigate the precision 
of the lattice solutions, we have calculated the 
sorptivity s  as defined in Eq. (13) [20]. 

∫=
1

0

d θλs , (13)

2
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= xtλ , (14)

where λ  is the Boltzmann variable, x is the 
location variable (indicated as y in Figure 8 
(c)), and t is time. Since Eq. (13) is of one 
dimension, and the lattice models are of higher 
dimensions, we cannot directly evaluate Eq. 
(13) with the dual-lattice models. Therefore, 
the sorptivity of the lattice solution is 
calculated with Eq. (15), in which the 
polygonal Voronoi cells  are divided into a set 
of triangles Ωj and the potential distribution θ  
is integrated over these triangles using 
Gaussian quadrature [22], followed by division 
by the dimension of x and the square root of 
time t. 
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This sorptivity is compared with an 
approximation, which is suggested by Parlange 
et al. [23] in Eq. (16), as listed in Table 1. 
These two values show good agreement within 

2% difference. Hence, it has been shown that 
the dual lattice solves non-linear diffusion 
problems with good accuracy. 
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Table 1: Comparison of sorptivity values 

Method Sorptivity 
(mm s−1/2) 

Lattice solution (at t=60 min) 0.191 
Approx. solution by Eq. (16) 0.195 
 

4 NUMERICAL SIMULATIONS 

4.1 Target experiment 
The water absorption experiments 

performed by Zhang et al. [24] are simulated 
by the dual-lattice models. In this experiment, 
some sections of steel reinforced concrete, the 
dimensions of which are 100 mm × 100 mm × 
25 mm, were prepared. The sections were 
equipped with two steel bars of 8-mm 
diameter, located in the lower and upper 
portions of the section, respectively. Each 
specimen has a single flexural crack of 
approximately 0.35 mm width at the center, 
which was introduced through a three-point 
bending loading. The bottom face of each 
specimen was soaked in water, with the sides 
being covered by aluminum foil after complete 
drying over a four-day period. The progress of 
water absorption was observed through the 
neutron radiography technology, and given as 
grey-scale images.  

4.2 Numerical models 
The Voronoi diagram used in the 

simulation is drawn in Figure 9. The locations 
of the vertical flexural crack and two 
horizontal debonded zones are also indicated 
in the figure as well as the boundary 
conditions. The initial condition θ=0 is 
imposed through the domain. 

Based on the verification exercise presented 
in section 3.3, seven sets of base diffusion 
coefficients are simulated as listed in Table 2. 
The lattice elements represent one of four 
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features: matrix, flexural crack, and lower and 
upper debonded zones. The diffusion 
coefficients of each feature are different, such 
that they represent the effects of crack opening 
and fracture damage on permeability. These 
parameters are determined so as to reproduce 
the experimental observations. The shape term 
in the diffusion coefficient of Eq. (11) is fixed 
to be n=6.4 as suggested by Leech et al. [20]. 
Case B is the base set of diffusion coefficients, 
from which comparisons can be made. For 
example, cases A, B, and C elucidate the role 
of the matrix diffusion coefficient; cases B, D, 
and E clarify the influence of the flexural 
crack diffusion coefficient; and cases B, F, and 
G permit study of the diffusion coefficient of 
the debonded zones. 

Table 2: Base diffusion coefficient D0 (mm2/s) 

case matrix flexural 
crack 

debonded 
(lower) 

debonded 
(upper) 

A 2.4×10-4 
2.4×10-1 

0.6×10-2 0.3×10-2
B 1.2×10-4 
C 0.6×10-4 
D 

1.2×10-4 

7.2×10-1 
E 0.8×10-1 
F 2.4×10-1 1.8×10-2 0.9×10-2

G 0.2×10-2 0.1×10-2

 

4.3 Numerical results 
The left column of Figure 10 is the ratio of 

absorbed water content to the total absorbable 
water content at location y, which is calculated 
as 

∫
−

=
2/

2/

d ),,(1),(
L

L

xtyx
L

ty θθ . (17)

For t=1, 5, and 30 min, the results of cases 
B, D, and E are displayed to compare the 
effect of the diffusion coefficient for the 
flexural crack. Larger diffusion coefficients 
provide higher water content distributions, i.e. 
case D shows the highest water content 
distributions, and the case E shows the lowest. 
Case B shows good agreement with 
experimental results at earlier times (t=1 to 30 
min). 

For t=60, 120, and 480 min, cases B, F, and 

G compare the effect of the debonded zone 
diffusion coefficients. The qualitative 
observation is similar to that for the previous 
cases, t=1, 5, and 30 min, i.e. larger diffusion 
coefficients provide higher water content 
distributions. For these results, case B shows 
higher water content distributions compared to 
the experimental results. 

The middle-right column of Figure 10 
presents contour images of the reduced water 
content distributions for case B, whereas the 
middle-left column presents grey-scale images 
of water content measured by Zhang et al. 
using neutron radiography [24]. Water first 
penetrates the flexural crack, and then 
progresses into the debonded zones. As the 
flexural crack and debonded zones become 
saturated, water gradually ingresses into 
matrix. Along with water entering from the 
bottom face, the specimen becomes nearly 
saturated at t=480 min. The contour image at 
480 min resembles that obtained through the 
experiment, in particular with respect to the 
low water content regions at the middle of 
both sides. 

The right column of Figure 10 is the 
reduced water content at the middle of the 
sections at y=50mm. For t=1, 5, and 30 min, 
cases B, D, and E show the influence of the 
flexural crack diffusion coefficients. Cases B 
and D show better results than that of case E, 
although these three cases show almost no 
difference for these times. For t=60, 120, and 
480 min, cases A, B, and C are chosen to study 
the effect of matrix diffusion coefficient. In all 
cases, it is observed that the flexural crack first 
becomes saturated, and then water ingresses 
into the matrix. Case A reaches the almost 
saturated state too early. Cases B and C exhibit 
better results, similar to those of the 
experiments. 

4.4 Discussions 

Differences between the lattice model and 
experimental results may be due to several 
reasons. While the neutron radiography detects 
the absolute water content, the current method 
calculates the reduced water content, i.e. the 
ratio of absorbed water content to the total 
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absorbable water content. In the proposed 
model, the volume of steel reinforcing bars is 
treated as that of normal concrete. Hence, the 
volume of steel reinforcing bars should be 
subtracted from the numerical results if 
directly compared with experimental results. 
This would be achieved by three-dimensional 
analyses with the volume of the steel 
reinforcing bars explicitly modeled. 

The contour images of Figure 10 (middle) 
provide slightly different results from those 
obtained through experiments. The difference 
comes, in part, from the assumption that the 
base diffusion coefficient of each region is 
constant. It is likely that flexural loading 
produces non-uniform distribution of stresses 
and strains along the vertical axis. This leads 
to the non-uniform crack opening along the 
crack path and also non-uniform debonding of 
the steel reinforcement bars. Thus, it is 
expected that graded diffusion coefficients 
along the flexural crack and debonded zones 
should produce more realistic results. 

5 CONCLUSIONS 
This paper has reviewed fundamental 

concepts of a dual-lattice model, which is 
based on the duality between the Delaunay 
tessellation and Voronoi diagram generated 
from a random set of points. The discrete 
advection-diffusion equation on the flow 
lattice has been described with reference to the 
finite volume method. This proposed method 
has been verified by solving a linear transient 
diffusion problem, a linear advection problem, 
and a non-linear diffusion problem. The 
solutions obtained via the dual lattice have 
shown good agreement with analytical or other 
numerical solutions. 

Finally, numerical simulations of water 
absorption in cracked reinforced concrete have 
demonstrated the capabilities of the present 
method through qualitative comparisons with 
those obtained by the neutron radiography 
experiments. The simulated results suggest 
that closer agreement with the experimental 
results could be obtained with more realistic 
settings of the diffusion coefficients. In future 
work, the proposed method could be extended 

to simulate more complicated durability 
problems of reinforced concrete structures 
such as those due to the ingress of chlorides 
and sulfates, carbonation, or steel corrosion. 
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1) Arbitrary point set 2) Delaunay tessellation 4) Voronoi diagram

3) Structural lattice 5) Flow lattice  
Figure 1: Generation procedure of dual-lattice models. 
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Figure 2: Configuration of structural lattice elements in 
two dimensions (left) and normal and shear springs of a 

structural lattice element (right). 
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Figure 3: Typical stress versus crack opening  

relation [3]. 
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Figure 4: Configuration of flow lattice elements in two 
dimensions (left) and elemental dimensions of a flow 

element (right). 
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Figure 5: Configuration and elemental dimensions of 

dual-lattice elements in three dimensions. 
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Figure 6: Linear transient diffusion in three dimensions: 

(left) Irregular discretization of domain; and (right) 
computed results with analytical solutions. 
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(b) Initial condition (upper left) and computed solutions.  

Figure 7: Linear advection in infinite plane. 
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(b) Computed reduced-water-content distributions. 
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(c) Computed reduced water content distributions along 

y axis (indicated as “lattice”), compared with finite 
difference solutions (indicated as “FDM”). 

Figure 8: Water absorption in uncracked concrete. 
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Figure 9: Water absorption in cracked reinforced 

concrete: Voronoi diagram of domain, locations of 
flexural crack and debonded zones, and boundary 

conditions. 
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Figure 10: Reduced-water-content distributions in cracked reinforced concrete: (left) calculated via Eq. (17) along 
vertical axis; (middle-left) images of water penetration obtained via neutron radiography (adapted from [24]); (middle-

right) of case B in contour images; and (right) along horizontal axis at mid-height. 


