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Abstract. Majority of concrete structures are subjected to fatigue loading. It is important to math-
ematically model fatigue in order to predict the remaining life of these structures. Fatigue crack
propagation is a complex and irreversible process, hence an energy approach is adopted in this work
by using thermodynamics as the framework. In thermodynamics, a dissipation potential is used to
describe the evolution of internal variables of a dissipative phenomenon. An analytical expression for
dissipation potential defined for fatigue crack propagation in concrete is derived using the concepts
of dimensional analysis and self-similarity. A fatigue crack propagation model is obtained using this
potential as a guideline and is validated using available experimental results. An attempt is made to
impart physical meaning to this potential and also to the various dimensionless products involved. It
is shown that the proposed expression for dissipation potential captures size effect in concrete and
therefore resulting in more objective results.

1 INTRODUCTION

Fatigue is a progressive, localized, perma-
nent damage that occurs in a structure, when
subjected to cyclic loading. It is important to
understand and mathematically model the rate
of fatigue crack propagation in a structure in or-
der to predict its residual life. Fatigue crack
propagation in concrete structures is a very
complex process, involving irreversible changes
at micro, meso and macro levels. Initially, irre-
versible changes occur at micro level; and with
increasing number of cycles, the damage accu-
mulates and takes the form of a macrocrack.
This crack propagates further leading to the ul-
timate failure of the structure. The presence
of a fracture process zone ahead of crack tip
in quasi-brittle materials like concrete further

complicates the process. The theory of frac-
ture mechanics is one of the several approaches
through which the fatigue phenomenon in con-
crete is studied. This involves the determina-
tion of a fatigue crack propagation law, from
which the number of cycles to failure can be
predicted. It could be stress based approach,
revolving around stress intensity factors, more
appropriate in linear elastic fracture mechanics.
Alternatively, it could be energy based, dealing
with the energy release rate and is suitable for
both linear as well as non-linear fracture me-
chanics. The energy based approach is a more
viable one as it gives a global response of the
structure and, since we assert to understand and
model a complex process through an energy ap-
proach, it seems reasonable to use the concepts
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of thermodynamics. A model based on fun-
damental physical principles such as those of
thermodynamics is more desirable than a model
based on analogy. Fatigue is an irreversible pro-
cess and hence the theory of irreversible (non-
equilibrium) thermodynamics is suitable to de-
scribe it.

The thermodynamic formalism is based on
the assumption of existence of two kinds of po-
tentials, thermodynamic potential and a dissipa-
tion potential. Any material behavior can be ex-
pressed as a mathematical model, if the second
law of thermodynamics is satisfied and a proper
choice of state variables, analytical expressions
of the state potential and dissipative potential
are made. The choice of variables depends upon
the purpose of modeling, the phenomena to be
modeled, the conditions under which it occurs,
and the predictions that are to be made from the
model. Generally, the free energy is chosen as
the thermodynamic potential and the state laws
are derived from it. To describe a dissipative
process, a dissipation potential is required [1].
The choice of dissipation potential is essentially
an assumption of the constitutive model and is
usually not derived from thermodynamic foun-
dations. Such a potential has no apriori physical
meaning [2]. The available expressions for dis-
sipation potential are mostly applicable to met-
als and are derived empirically by fitting exper-
imental data. They are mostly developed using
the framework of continuum damage mechanics
[1,3,4]. The existing expressions for dissipation
potential contain parameters with no physical
meaning. In this work, an analytical expression
for dissipation potential is developed in fracture
mechanics framework to model fatigue crack
propagation in concrete. This is done using the
concepts of dimensional analysis and interme-
diate asymptotics. The crack length is chosen
as the internal variable and hence its evolution is
obtained from this expression. In other words,
the fatigue crack propagation model is just an
outcome of this exercise, but the dissipation po-
tential is used as a guideline. Also, an attempt
is made to impart physical meaning to this po-
tential.

2 THERMODYNAMIC POTENTIALS

Thermodynamic potentials are scalar func-
tions of a set of independent state variables used
to represent the thermodynamic state of a sys-
tem from which all the characteristics of the
system can be deduced. Associated with this set
of independent state variables is a set of depen-
dent state variables called the thermodynamic
properties or associated variables or dual vari-
ables. These play a duality type role in that
each state variable has a thermodynamic prop-
erty and it is occasionally desirable to reverse
these roles. For example, if Π is the thermo-
dynamic potential which is a function of a set
of state variables say, Π = Π̂(χ0, χ1, ...), then
from chain rule

dΠ =
∂Π

∂χ0

+
∂Π

∂χ1

+ ... (1)

The derivatives ∂Π
∂χj

are the thermodynamic
properties, also called thermodynamic forces
associated with each independent variable χj

[5].
The state variables include the observable

variables and the internal variables. The ob-
servable variables are the usual field quanti-
ties like the total strain (ε) and temperature
(T ). For a reversible (elastic) phenomenon, the
state depends uniquely on the observable vari-
ables. But, for dissipative phenomena, the cur-
rent state also depends on the internal variables
which describe the internal structure of the ma-
terial and also are able to capture the past his-
tory effect. The choice of the internal variables
is dictated by the phenomenon under study and
its application. The plastic strain εp, the dam-
age variable D or the crack length a are few in-
ternal variables depending on whether the phe-
nomenon under study is plasticity, damage or
fracture. The thermodynamic potential allows
one to write relations between observable vari-
ables and its associated variables. However, for
internal variables it allows only the definition
of their associated variables. Whereas, a dissi-
pation potential allows one to get the relation-
ship between the internal variables and its as-
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sociated variables. In order to describe the dis-
sipation process or the evolution of the internal
variables, a dissipation potential is needed [1].

2.1 Dissipation potential φ

The laws of elasticity are derived from the
thermodynamic potential, whereas the consti-
tutive equations for dissipative phenomena like
plasticity or damage are derived from dissi-
pation potential. Let Vk be the internal vari-
ables and Ak, their corresponding associated
variables. Dissipation is defined as the sum
of product of the thermodynamic force (asso-
ciated variable) Ak and the respective flux vari-
able (V̇k).

D = ΣAkV̇k (2)

Dissipation potential φ is a function of the flux
variables, the gradient of which will give the
thermodynamic force causing it.

Ak =
∂φ

∂V̇k

(3)

According to the second law of thermody-
namics, dissipation must be positive. The dis-
sipation potential must essentially be a posi-
tive, convex scalar valued function possessing
a value zero when Vk = 0 to ensure auto-
matic satisfaction of second law of thermody-
namics [1]. It is more easy to express the com-
plementary laws in the form of evolution laws
of flux variables as functions of dual variables.
The Legendre-Fenchel transform enables us to
define the corresponding potential φ∗(Ak), the
dual of φ with respect to the variables V̇k.

2.2 Dual of Dissipation Potential φ∗

Legendre transformation is an operation that
transforms one real-valued function of a real
variable into another. The Legendre transform
of a convex function f is the function f ∗ defined
by

f ∗(f ′(x)) = sup
x

(x f ′(x) − f(x)) (4)

Generally, a function expresses a relation be-
tween two parameters; an independent variable

or control parameter (x) and a dependent value
or function (f ). This information is encoded in
the functional form of f(x). In some circum-
stances, it is useful to encode the information
contained in f(x) in a different way. Given
a function f(x), the Legendre Transform pro-
vides a more convenient way of encoding the
information in the function when it is strictly
convex and is smooth, and it is easier to mea-
sure, control, or think about the derivative of f

with respect to x than it is to measure or think
about x itself [6]. The Legendre-Fenchel trans-
form enables us to define the corresponding po-
tential φ∗(Ak), the dual of φ with respect to the
variables V̇k. If the function φ∗ is differentiable,
the normality property is preserved for the vari-
ables V̇k. The complementary laws of evolution
can be written as [1]

V̇k =
∂φ∗

∂Ak

(5)

The whole problem of modeling a phenomenon
lies in the determination of the analytical ex-
pressions for the thermodynamic potential and
for the dissipation potential φ or its dual φ∗

and their identification in characteristic exper-
iments. Analytical expression can be derived
using dimensional analysis.

3 DIMENSIONAL ANALYSIS
Dimensional analysis is a tool to find rela-

tionship between quantities occurring in a phe-
nomenon by comparing the dimensions of the
quantities involved. This is done by obtaining
dimensionless products which helps us to re-
duce the number of variables involved in the
problem. When properly formed, these dimen-
sionless products have clear physical interpre-
tation and thus offer physical understanding of
the phenomenon under study. Let there exist
a relationship between a quantity a, the depen-
dent variable (governed parameter), and a set of
quantities that are independent (governing pa-
rameters), which can be written as

a = f(a1, ..., ak, b1, ...bm) (6)

where, the parameters a1, ..., ak are those with
independent dimensions and are chosen to be
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those governing parameters which are definitely
significant for the phenomenon. Having in-
dependent physical dimensions means none of
these quantities have a dimension that can be
represented in terms of a product of powers of
dimensions of the remaining quantities. The pa-
rameters (b1, ..., bm) can be expressed as the
product of powers of the dimensions of the pa-
rameters (a1, ..., ak). Applying Buckingham’s
Π theorem to Equation 6, we get

Π = Φ(Π1, .., Πi, ...., Πm) (7)

where, Π terms are the dimensionless param-
eters defined using the expressions for dimen-
sions of a, b1, ..., bm through the powers of the
dimensions of a1, ..., ak and are given by

Π =
a

a
p
1...a

r
k

, Πi =
bi

a
pi

1 ...ari

k

, ... i = 1, ...m (8)

Φ is a function of dimensionless parameters
Πi. Dimensional analysis thus transforms f , a
function of k + m variables to Φ, a function of
m variables only.

f(a1, ..., ak, b1, ...bm) =

a
p
1...a

r
kΦ

(

b1

a
p1

1 ...ar1

k

, ..
bm

a
pm

1 ...arm

k

)

(9)

Although dimensional analysis is considered
as a universal tool, however, there are physi-
cal problems that cannot be solved by dimen-
sional analysis in principle. For example, the
problem that involves information about the ini-
tial and boundary conditions, the system behav-
ior in the initial times, the details of process
generation, its behavior near the system bound-
aries, decay via equilibration, energy dispersion
or dissipation during the process evolution. The
present problem come under this category as
it deals with energy dissipated during fatigue
crack propagation. Consequently, more sophis-
ticated tools must be employed to cope success-
fully with these problems. The theory of inter-
mediate asymptotics, which can be considered
as a generic extension of dimensional analysis
can be adopted [7].

3.1 Intermediate Asymptotics
The intermediate asymptotic is a timespace

dependent solution of an evolution equation that
has already forgotten its initial conditions, but
still does not feel the limitations imposed by
the system boundary. It is an approximate so-
lution to a complex problem, valid in a certain
range. It can be represented by the self-similar
solution, which is the exact solution to a sim-
plified problem, valid in the whole range. The
consideration of self-similar solutions as inter-
mediate asymptotics allows us to understand
the role of dimensional analysis in establish-
ing self-similarity and determining self-similar
variables [8]. Two kinds of self-similar solu-
tions exist which are discussed below.

3.2 Self-similar solutions of first and sec-
ond kind

Considering Equation 7, bi is said to be es-
sential if the corresponding dimensionless pa-
rameter Πi is not too large and not too small.
On the other hand, if the dimensionless param-
eter Πi corresponding to dimensional parameter
bi is either very small or very large compared to
unity and the function Φ has a finite limit then
the parameter may be considered to be non es-
sential.

If there exists a finite limit of the function
Φ when the parameters Πl+1, ..., Πm all go to
zero or infinity, while other similarity parame-
ters Π1, ...Πl remain constant, then the function
Φ can be replaced by smaller number of argu-
ments as

Π = Φ1(Π1, ...Πl) (10)

This is the case of the phenomenon to be self
similar of the first kind or complete similarity
in parameters Πl+1, ..., Πm. On the other hand
when the parameters Πl+1, ..., Πm tends to zero
or infinity, if Φ also tends to zero or infinity,
then the quantities Πl+1, ..., Πm become essen-
tial, no matter how large or small it becomes.
However, in some cases, the limit of the func-
tion Φ tends to zero or infinity, but the func-
tion Φ has power type asymptotic representa-
tion which can be written as,
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Φ = Π
αl+1

l+1 ...Παm

m Φ1 (Π1, ..., Πl) (11)

This is the case of incomplete self similarity
or self similarity of second kind [8]. Here,
αl+1, ..., αm are constants and cannot be ob-
tained from dimensional analysis. These con-
stants can be obtained either from a best fitting
procedure on experimental results or through
numerical simulations.

4 EXPRESSION FOR DUAL OF DISSI-
PATION POTENTIAL

In this section, an expression for dissipation
potential is derived using the theory of inter-
mediate asymptotics, dimensional analysis and
self similarity. The system is a cracked concrete
beam under three-point bending; the thermody-
namic process is the propagation of crack with
increasing number of load cycles. This process
being irreversible, energy is dissipated. To de-
scribe a dissipative process a dissipation poten-
tial is needed. Crack length is the internal vari-
able, the evolution of the flux of this variable,
i.e. the rate of crack propagation is the quan-
tity of interest. The conjugate of this variable,
that is the thermodynamic force causing it is the
strain energy release rate G. The dissipation po-
tential is in terms of the rate of crack propaga-
tion ȧ; when differentiated with respect crack
rate, it gives the energy release rate G. But it
is easier to calculate G rather than rate of crack
propagation ȧ. The Legendre-Fenchel transfor-
mation as elucidated in the previous section, en-
ables us to use the dual of dissipation potential,
the differentiation of which with respect to G

will give the rate of crack propagation ȧ. Firstly,
the relevant variables on which the dual of the
dissipation potential is likely to depend on is
listed. Then dimensional analysis is used to
obtain dimensionless products. Proceeding fur-
ther, the existence of self similarity is explored
and the model is worked out. The model con-
tains unknown constants, which are obtained
from experimental results.

4.1 Dimensional analysis - Parameters and
dimensionless products

Dissipation potential in the present context
is defined as the energy dissipated per unit vol-
ume, hence the dimensions are FL−2. The
list of variables on which the dissipation poten-
tial depends on must include a loading parame-
ter, displacement parameter,geometric parame-
ter and material parameters. It may also include
the state variables itself. Each of these influenc-
ing parameters are discussed below.

1. The loading parameter considered here is
the strain energy release rate which is the
energy required for unit crack propaga-
tion. It depends on the loading, crack
length and specimen geometry and the
material. During fatigue loading, for each
cycle, part of the strain energy is used for
crack propagation and the remaining is
dissipated. Hence, this is one of the most
important parameters that will affect dis-
sipation potential. Since load is applied
in cycles, varying between a minimum
and maximum amplitude, the load range
is considered in terms of the increment in
the energy release rate range ∆GI . The
subscript I represents crack propagation
in mode I.

2. In cracked specimens, generally, the
crack mouth opening displacement
(CMOD) is more widely used as the
displacement parameter. Under fatigue
loading, the area in between the unload-
ing curve and the reloading curve of a
typical load displacement plot gives the
energy dissipated. In practical situations,
CMOD may be considered as the crack
width and is assumed to have some effect
on the dissipation potential. The notation
used for CMOD is w.

3. It is well known that a quasi-brittle mate-
rial such as concrete exhibits strong size
effect. Hence the size parameter in terms
of the depth of the beam specimen, D is
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also included in order to obtain a size in-
dependent expression for dissipation po-
tential.

4. The material parameters included are
the fracture energy Gf , and the tensile
strength of the material ft.

5. Sometimes the variable, in the evolution
of which we are interested can itself be-
come a parameter [1]. In this problem,
the crack length, a is also considered as
a parameter on which the dissipation po-
tential depends.

Considering all the above parameters, the
dual of the dissipation potential Φ∗ can be writ-
ten as

Φ∗ = f(∆GI , w, a, Gf , ft, D) (12)

Table 1: Variables on which the dual of dissipation po-
tential depends and their dimensions

Variable Definition Dimension
Φ

∗ Dual of dissipation potential FL−2

∆GI Energy release rate range FL−1

w CMOD L
a Crack length L

Gf Fracture energy FL−1

ft Tensile strength FL−2

D Structural size L

Table 1 gives the dimensions of each of these
quantities. Choosing Gf and ft as having in-
dependent dimensions and using them to non-
dimensionalize the remaining quantities, we ob-
tain,

Φ∗

ft

= f

(

∆GI

Gf

,
ft

Gf

w,
ft

Gf

a,
ft

Gf

D

)

(13)

We obtain Φ∗ as a function of dimensionless
products

Φ∗ = ft f(Π1, Π2, Π3, Π4) (14)

where, Π1 = ∆GI

Gf
, Π2 = ft

Gf
w, Π3 = ft

Gf
a,

Π4 = ft

Gf
D.

Now, we explore the possible existence of
any self similar behavior in these four dimen-
sionless products.

1. First consider, Π1, it is a function of the
strain energy release rate range. If we as-
sume complete self similarity, it means
that Φ∗ must be independent of ∆GI ,
since complete similarity will render the
quantity non essential. But ∆GI is the
most important parameter as it is the load-
ing parameter and Φ∗ will invariably de-
pend on load. Hence we assume that
incomplete self similarity exists with re-
spect to Π1.

2. Π2: The softening portion of the stress
(σ)-CMOD(w) curve is typically used for
concrete. If we non-dimensionalize these
parameters, we get σ

ft
vs ftw

Gf
. The prob-

lem of obtaining an analytical expression
for the softening curve lies in assuming
reasonably a linear, bilinear or exponen-
tial relationship between these two di-
mensionless quantities. Thus Π2 is an im-
portant quantity responsible for determin-
ing the shape of the softening curve. The
value of Π2 typically varies between 0.1
to 12. Thus we see that if Π2 tends to 0,
the energy dissipated is less since there is
no softening tail. If on the other hand, Π2

value is very high, it indicates a longer
softening tail, indicating more energy is
dissipated.

3. Π3: It is the non dimensional crack
length. Its value typically ranges from
100 to 106 or higher depending on speci-
men size. At failure, a lower value indi-
cates a ductile specimen and higher value
indicates brittle. Generally, the parameter
Π3 shows dependence of fatigue behav-
ior on initial notch length and on a char-
acteristic length scale that describes the
ductility of the material. By introducing
a characteristic length parameter which is
defined as
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lch =
EGf

f 2
t

(15)

the dimensionless parameter Π3 is depen-
dent on a

lch
, where lch characterizes the

length of the fracture process zone. The
smaller the value of lch, the more brittle
is the material. Hence, this dimension-
less parameter governs the transition be-
tween ductile and brittle behavior when
Π3 → 0 and Π3 → ∞ , respectively [9].
Experimental results have shown the de-
pendence of crack growth rate on crack
length (a). Therefore, we can assume the
existence of incomplete self similarity in
this quantity.

4. Π4: Its value typically ranges from 103

to 106 and more as size of structure in-
creases. This parameter captures the size
effect, since it is based on the size of the
specimen. Large sized specimens dissi-
pate less energy than small sized speci-
mens in a normalized sense.

Thus for Π2, Π3 and Π4 also we assume
the existence of incomplete self similarity. The
substantiation of this assumption is done and it
is indeed found that this assumption is valid.
Thus, the dual of the dissipation potential can
be written as

Φ∗ = ft Πγ1

1 Πγ2

2 Πγ3

3 Πγ4

4 (16)

or Φ∗ = ft

(

∆GI

Gf

)γ1
(

ft

Gf

w

)γ2

(

ft

Gf

a

)γ3
(

ft

Gf

D

)γ4

(17)

or Φ∗ = ∆G
γ1

I G
(−γ1−γ2−γ3−γ4)
f

f
(1+γ2+γ3+γ4)
t wγ2aγ3Dγ4 (18)

The constants γ1, γ2, γ3 and γ4 cannot be ob-
tained from dimensional analysis. These con-
stants can be obtained from either numerical
computations or experiments. Here, we obtain

the values of these constants from experimental
results. Φ∗ is the area between the unloading
and reloading curve as it represents the energy
dissipated. If we can compute this energy dissi-
pated in each cycle and sum it up and then use
it to calibrate through a regression analysis, we
can get the unknown constants. But the value of
Φ∗ is almost impossible to measure from exper-
iments. However, the flux variables and the dual
variables are quite easy to measure and it is on
their values that modeling and identification are
based. The complementary laws of evolution
are therefore directly identified but the dissipa-
tion potential is used as guideline for writing
their analytical expression. It is clear that al-
though Φ∗ is difficult to measure, the flux vari-
able, i.e., the rate of crack propagation ȧ and
the dual variable, i.e., the energy release rate
range ∆GI are easy to measure from experi-
ments. Hence on the basis of these values the
unknown constants are obtained. If the function
Φ∗ is differentiable, the normality property is
preserved and the complementary laws of evo-
lution can be written as [1]

ȧ =
da

dN
=

∂Φ∗

∂∆GI

(19)

where, a is the crack length and N is the
number of cycles.

4.2 Fatigue crack propagation model
The fatigue crack propagation model can be

obtained from Equations 18 and 19 as

da

dN
= γ1 ∆G

γ1−1
I G

(−γ1−γ2−γ3−γ4)
f

f
(1+γ2+γ3+γ4)
t wγ2 aγ3 Dγ4 (20)

The unknown constants are determined
through a calibration process using experimen-
tal results. In this study, the experimental
results of Shah [10] are taken. It involves
testing concrete beams of three different sizes
(namely small, medium and large) with an ini-
tial notch subjected to cyclic loads under three
point bending. The geometry details and mate-
rial properties are given in Table 2 and the load-
ing pattern is given in Figure 1.
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Table 2: Geometry and material properties of beam specimens [10]

Specimen Depth Span Thickness Notch Size Gf E ft

D (mm) S (mm) B (mm) a0 (mm) (N/mm) (N/mm2) (N/mm2)
Small 76 190 50 15.2 0.07 30000 3.8

Medium 152 380 50 30.4 0.07 30000 3.8
Large 304 760 50 60.8 0.07 30000 3.8

Figure 1: Loading pattern used in the experiment [10]

The load and CMOD for every load cycle
is recorded during the experiment until fail-
ure. Through a finite element analysis, the
CMOD compliance and crack length relation is
obtained. Thus we now have the information
on load, CMOD, crack length, number cycles
and the geometry details. Using these one can
compute ∆GI and da

dN
. All the values on the

right hand side of the Equation 20 are known
except for the constants and also experimental
value of da

dN
is known. Through an optimiza-

tion process, the constants are computed such
that the error, i.e. difference between the value
of da

dN
as predicted by the model and the exper-

imental value is minimized. The data for the
medium specimen is used for calibration. The
value of the constants γ1, γ2, γ3 and γ4, for the
best fit are 3.9544,−0.4842,−0.1685,−0.4689
respectively. Figure 2 shows the variation of
log

(

da
dN

)

with log (∆KI) for the medium spec-
imen that was used for calibration purpose. The
model is used to predict da

dN
for other specimens.

Figure 3 shows the variation of log
(

da
dN

)

with
log (∆KI) for small and large specimens. A
good match between the predicted and experi-
mental result is observed, thereby validating the
model.
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g

(
d
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d
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)
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Figure 2: Calibration of the model using data of medium
specimen [10]
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Figure 3: Comparison of the fatigue crack propagation
rate using the proposed model with experimental results
[10]
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5 RESULTS AND DISCUSSION

Experimental data of [10] for all the three
specimens; small, medium and large, is taken
to present Φ∗ as a function of the number of cy-
cles, N . Figure 4 shows the variation of Φ∗ with
respect to number of cycles N using the pro-
posed expression. It is observed that initially
the Φ∗ value is small, with increasing number of
load cycles, its value increases. The same trend
is observed in all the three specimens. Figure 5
shows the variation of Φ∗ normalized with the
initial value that is the energy dissipated after
one cycle (Φ∗

1) versus the number of cycles, N

for all the three specimens. It is seen that the
value Φ∗

Φ∗

1

is constant for all the specimens as
the number of cycles increases. For clarity pur-
pose the same plot is repeated on a logarithmic
scale as shown in Figure 6. The smallest spec-
imen fails at 3256 cycles, the medium at 5537
cycles and the large one at 8027 cycles. Just be-
fore failure the energy dissipated becomes un-
bounded for all the three specimens as noted by
the sudden rise in the graph at the time of fail-
ure. The expression for Φ∗ proposed is thus able
to capture the size effect in concrete leading to
objective results.
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Figure 4: Variation of dissipation potential with number
of cycles for different specimens [10]
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Figure 5: Dissipation potential normalized with respect
to its initial value as a function of number of cycles for
different specimens [10]
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Figure 6: Dissipation potential normalized with respect
to its initial value as a function of number of cycles for
different specimens on a log-log plot [10]

The fatigue crack propagation model is used
to predict the rate of crack propagation for spec-
imens from other experimental sources [11].
The results are shown in Figure 7 for two differ-
ent stress ratios. A good agreement in the model
and experimental values is observed in Figure 7
and also shown previously in Figure 3. Thus the
fatigue crack propagation model obtained from
dissipation potential can be considered as robust
enough and also most importantly it is derived
from first principles.
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Figure 7: Comparison of the fatigue crack propagation
rate using the proposed model with experimental results
for different stress ratios [11]

6 CONCLUSIONS
An analytical expression for the dual of

dissipation potential in the context of fatigue,
as applicable to concrete structures in a frac-
ture mechanics framework is derived using the
concepts of dimensional analysis, intermediate
asymptotics and self-similarity. A fatigue crack
propagation model is proposed as an outcome
of this exercise. The model is found to predict
well the fatigue crack propagation rate in dif-
ferent specimens as is shown in the validation
study. A physical meaning is imparted to the
potential as being the energy dissipated per unit
volume. The expression for the dual of the dis-
sipation potential is found to capture size effect
in concrete leading to objective results.
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